
Under consideration for publication in Math. Struct. in Comp. Science

Transcendental syntax I: deterministic case

Jean-Yves Girard

Revised June 25, 2016

À Corrado, sans qui le λ-calcul
ne serait pas ce qu’il est.

Et donc, la logique non plus.

We study logic in the light of the Kantian distinction between analytic (untyped,
meaningless, locative) answers and synthetic (typed, meaningful, spiritual) questions.
Which is specially relevant to proof-theory: in a proof-net, the upper part is locative,
whereas the lower part is spititual: a posteriori (explicit) as far as correctness is
concerned, a priori (implicit) for questions dealing with consequence, typically
cut-elimination. The divides locative/spiritual and explicit/implicit give rise to four
blocks which are enough to explain the whole logical activity.

analytic synthetic

explicit Constat Usine

implicit Performance Usage

1. Under the sign of Herbrand

1.1. Semantics as the prejudice par excellence

Transcendental syntax1 is the study of the conditions of possibility of language, e.g., the
presuppositions implicit in simple acts like the writing of a proposition or deduction.

This means refusing the usual baloney “langague + interpretation”, the interpretation
being usually a selfy of the language: to say, like Tarski, that ∨ is interpreted by or is
of limited interest. Especially since we know that there are several sorts of disjunctions,
classical (`) vs. intuitionistic (⊕)!

The prejudice — the untold presupposition — par excellence is the idea that a proposi-
tion A has a well-defined signification — a denotation would say Frege. This supposedly

1 And the ANR project ANR-2010-BLAN-021301 logoi who partially supported the work. Thanks to
Marc Bagnol, Paolo Pistone and Maria Rengo for their feedback.
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well-defined meaning renders possible the reuse of A, e.g., deduction: from Γ`A and
∆, A`B, deduce Γ,∆`B. But are we that sure those two A are the same? The fact that
we can both create and use word is at the very heart of syntheticity, i.e., meaning.

The balance between the creation of words and their use is the main presupposition of
logic, and thus the heart of transcendental syntax. The goal of our program is not quite
the removal of presuppositions, but rather their exposure: how come that we can use,
believe, in such an identification? This is why transcendental syntax is so antagonistic to
analytic philosophy and semantics which take this balance, the fact that A has a well-
defined denotation, as an undisputable fact, one of those which go without saying, thus
transforming the major presupposition of logic into a prejudice.

1.2. First block: the constat

The first step in the quest for the elusive meaning is to forget it, thus reaching a com-
pletely neutral (analytic, locative) state, which excludes any reference to a preexisting
language — e.g., semantics, the language of “reality”. We then proceed with a recon-
struction of logic from scratch, consistently with its primal status: during this process,
familiar logic artefacts, e.g., proofs, will progressively emerge.

A prefiguration of this approach can be found in the outstanding theorem of Herbrand
(1930). A classical proof involves a disjunction (contraction rule) and the values of the
existentials as functions of the universals; now, in order, to explain the dependencies
between quantifiers, he expresses the universals as virtual functions of the previous exis-
tentials. Say he wants to prove ∃y∀xA[x, y]: the answer may be a term t such that A[x, t].
In order to say that t cannot depend upon x, he writes x = f(y); if t = t[x] happens to
contain x, then the unification y = t[f(y)] fails.

The idea surfaced again with my proof-nets (1986) (Gir87; Gir11b): the failure of
unification becomes a cycle in the proof, a vicious circle so to speak. Proof-nets contain
all the lineaments of an approach to logic free of prejudices, i.e., of language: a proof-net
is basically a drawing in which the role of formulas is extremely limited. The real logic
artefact is at bay: it only remains to get rid of the remaining traces of language.

The upper part of a proof-net, the vehicle, is made of identity links JA,∼A K. In order
to avoid the prejudice, the propositions A,∼A should be replaced with their locations
pA(x), p∼A(x) which are but the (disjoint) spots where A,∼A are written and bear no
special relation to the meaning of A, in the same way “Groenland” is understood as a
location on the map, by no way as a green land. Of course, having lost their meaning,
pA and p∼A bear no longer any special correlation: this is the difference with proof-nets
which still use some linguistic prejudice. We could as well write links JA,B K, e.g., JA,A K.
One of the immediate tasks of transcendental syntax will be to explain why JA,A K is
“incorrect” without the usual compendium of semantic prejudices.

This upper part has strictly no meaning, it is analytic, in other terms locative: it
concerns the locations of links, i.e., formulas and their subformulas. The location pA(x)
can be split, using a binary function letter “·” into various sublocations: for instance,
if A is B ∨ C, pB(x) := pA(l · x), pC(x) := pA(r · x) (left and right subformulas).
Substituting l · x and r · x for x in the link pA(x), p∼A(x) yields J pA(l · x), p∼A(l · x) K
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and J pA(r·x), p∼A(r·x) K, i.e., J pB(x), p∼B(x) K and J pC(x), p∼C(x) K, a process known as
η-expansion. The technique of substitution — indeed, Herbrand’s unification — enables
us to see our links as wires that can be split into subwires. These sublinks can, in turn,
be split again, yielding, say, J pA(l · (r · x)), p∼A(l · (r · x)) K.

1.3. Second block: the performance

The previous use of locativity is constative: it is but a static representation of proofs.
The main aspect of proofs is however their dynamics, cut-elimination a.k.a. normalisation.
This dynamicity is the performative aspect of locativity. Here, we start to be concerned
with the knitting of our four blocks (constat/performance/usine/usage): since we want
to eliminate the use of any sort of external reference, the compactness of the approach
will compensate the absence of reference to “reality”. Better, this knitting is the actual
reality: analytic and synthetic aspects of knowledge are so densely mixed that this creates
an impression of objectivity; but only an impression — what realism forgets.

The knitting thus denies any special status to the constat that would make it a sort of
semantics of the performance: something is constative because we choose not to perform
it. Typically an electric appliance is performative only if we decide to plug it. In our
framework, we describe pluggings as as a matter of painting : a green location will
be plugged with the same location painted with the complementary colour, magenta.
Typically, J pA(x), pB(x) K and J pB(x), pC(x) K will thus merge into J pA(x), pC(x) K. It
must be observed that we could as well plug J pA(x), pB(x) K with J pB(l · x), pC(x) K, in
which case, the sole subwire J pA(l · x), pB(l · x ) K will actually be connected, yielding
J pA(l·x), pC(x) K. Unification (indeed, its technical variant, matching) enables one to use
and reuse the same wire undefinitely by splitting it into smaller and smaller subwires. . .
hence the possibility of divergence, i.e., of a never-ending performance.

Plugging through unification avoids the problem of external evaluation, at work in
rewriting: λ-calculus, whatever its qualities, is not quite analytic, since not sufficiently
knitted. The same applies to the boxes of proof-nets and their wedding-cake normalisa-
tion. Boxes, rewriting, etc., as global operations, can however be legitimate at a more elab-
orate stage. Take rewriting: the analytic process of normalisation knits constat and per-
formance; its synthetic counterpart is the knitting usine/usage through cut-elimination
theorems which replace (rewrite) cuts with “simpler” ones. This rewriting, which per-
forms very little at the analytic level, involves drastic changes of meaning, i.e., typing,
subjectivity: in other terms, rewriting makes sense as a synthetic operation.

This description of the locative layer (constat + performance) by means of plugging
and unfication seems to be the converging point of various approches to computation.
Typically, the resolution method of logic programming directly inspired from Herbrand,
a purely analytic approach to computation, beyond any idea of programming language2.
A clause Γ`A can be written J Γ, A K (J Γ, A K in case A is a goal). My own Geometry

2 Which suggested the childish idea of computing without algorithmic ideas, the so-called declarative
programming at work in the ill-fated language prolog.
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of Interaction, although officially set within functional analysis, made indeed use of the
same unification, see, e.g., (Gir95).

In terms of knitting, the performance is basic in matters of correctness, i.e., the usine
block. It is thus essential that a clear notion of normal form — strong normalisation —
can be devised. Indeed, the very form of correctness (normalisation of the plugging vehicle
+ ordeal) has been chosen the most analytic, i.e., general and neutral possible. The first
version of this paper used a beautiful idea of Mogbil and de Naurois (MdN11), thus
leading to “virtual switchings” which yielded the first box-free approach to exponentials.
However, virtual switchings introduced a sort of subcondition within correctness, thus
unknitting blocks 2 and 3, and had to be relinquished.

The performance is also related to the last block, usage which deals with consequence:
the associativity of composition requires a Church-Rosser property, which belongs in the
performative block: this is one of the strongest knitting between our four blocks.

1.4. Third block: l’usine

Let us come back to proof-nets: the lower part is made of formulas. In traditional ap-
proaches, e.g., natural deduction, the meaning of the proof is given by the semantics of
the formulas, in other terms by prejudice. Proof-nets introduced a major twist, namely
the correctness criterion. This condition is homogeneous in spirit with Herbrand’s ex-
pression of the universals as functions of the existentials: when I write x = f(y) I indeed
say that y is an existential variable which does not depend upon x. In the same way, the
switchings of proof-nets forbid certain dependencies.

When I do switch a proof-net, I create a finite set of links, an ordeal. To say that the
proof is correct amounts at saying that the plugging of the vehicle — the upper part
made of identity links — with such an ordeal normalises into a link of a specified form.
The finite set of all ordeals is called a gabarit : the gabarit thus conveys the spirit, the
sense of the formula we are proving.

There is no difference of nature between an ordeal and a vehicle: they use the same
sort of links, both are finite, etc. However, whereas the vehicle is purely locative — pA
means the location of A — the gabarit is spiritual: depending upon the formula, distinct
links will be drawn: a “⊗” will not be “switched” like a “`”.

This is why, although everything here remains analytic, locative, something essential
occurred: we are no longer neutral, the formulas got their meaning. A meaning wholly
contained in the choice of the gabarit, which can be seen as a set of factory tests: this
is l’usine3. If we see the synthetic as dealing with names, l’usine is the place where they
grow. Typically, in the Fiat factory, (Lingotto) the name cinquecento was bestowed on
any vehicle complying with the factory tests.

3 Usine = factory ; the french opposition usine/usage works too well to be translated.
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1.5. Fourth block: l’usage

Blocks 2 and 4 are implicit : block 2 because we cannot be sure of the output of a
performance, block 4 because we cannot foresee the possible uses of a logical artefact. If
syntheticity is meaning, spirit, block 4 (l’usage) illustrates the expression of Wittgenstein
meaning as use. In mathematics, meaning as use is deduction through Modus Ponens,
i.e., the cut rule. We cannot foresee the possible uses of a formula — of a name —, this
is why block 4 is far more implicit than block 2 which deals with a specific evaluation.

Coming back to our Fiat 500 : once gotten its label, its use is governed by operating
instructions. But there is never, in any situation, an absolute certainty that the factory
test (l’usine) guarantees the use (l’usage); but, often, as in mathematics, a reasonable
confidence. The gap between l’usine et l’usage is known as incompleteness — with an
analytic conterpart, undecidability, the gap between constat and performance.

L’usine may perform the wrong tests: imagine an incompetent engineer concentrating
on windscreen wipers and forgetting brakes4. In logic, the idea is thus to knit blocks 3
and 4 by showing that l’usine justifies l’usage. Indeed, if we can do such a thing with a
reasonable certainty (by means of usual mathematics), then we have completed our non
prejudiced approach to logic. Derealism (another expression for transcendental syntax,
emphasising its opposition to semantics) turns out to be a powerful tool. It compels us
into writing logical rules from the nets and not the other way around. A good rule, i.e.,
a good factory test, is a rule acceptable w.r.t. the a prioris of deduction, i.e., of the
operating instructions.

The analytic substrate of l’usage is plugging ; the adequation usine/usage is thus but a
cut-elimination concerning the performances implicit in deduction, i.e., in the cut rule.
Cut-elimination is the very heart of syntheticity: it asserts the adequation between the
creation (usine) and the use (usage) of the words, between rights and duties, so to speak.
It splits in two independent parts, the convergence of the normalisation process and the
fact that the output (normal form) is correct in the usine sense (block 3). This second
half is known as consistency which is thus not the full story; however, the impossibility
of consistency proofs shows, a fortiori, the impossibility of any absolute certainty as to
the knitting usine/usage.

By the way, the knitting between blocks 2 and 4 strongly relies on the Church-Rosser
property of the performative block, which, translated in terms of use, yields the compo-
sitionality (associativity) of consequence, and thus the (pleasant) illusion of objectivity,
stability, at work in what we perceive as “reality”.

1.6. The paper

The general task is to reconstruct logic along our four blocks. Which amounts basically at
finding the definite version of proof-nets. For editorial reasons (two distinct Festschrifts),
the paper has been split in two parts, this one and (Gir16). A splitting along the divide

4 Paraconsistent logicians commit the same mistake, but on purpose: for them, there is nothing like
l’usage, only irrelevant tests. Never buy a paraconsistent car!
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locative/spiritual would have made part 1 quite arid. This is why I preferred to split
the analytics between its deterministic version which is almost self-contained as long as
we deal with multiplicative and exponentials, and its general, non deterministic version
(Gir16) which enables one to handle, say, additives.

Even if we want to construct logic from scratch, this can only be a reconstruction,
which means that we roughly know what we are aiming at. For an obvious reason, by the
way: logic is a very healthy activity, which only suffers from a metaphysical, prejudiced,
approach, that of analytic philosophy. This is why we shall be compelled into translating
usual proofs in analytics terms (the vehicles) and formulas in synthetic ones (ordeals,
gabarits). These translations must be seen as examples of what we can do (and not as
yet-another-semantics).

Now, the role of a formula is played by a gabarit, i.e., a finite set of constellations;
and that of a proof by any vehicle (i.e., constellation) complying with the gabarit —
which includes the examples obtained from syntax. It then remains to establish that,
for specific choices of gabarits, e.g., ⊗/`, cut-elimination holds. This process involves
a reconstruction of the language as system of abbreviation for our synthetic units, the
gabarits.

Among the surprising outputs of the new technology, the fact that the exponentials !A
and ?A do not exist by themselves. This remark is consistent with the known impossibility
at drawing proof-nets for the multiplicative neutral⊥⊥⊥. The reason is that ?A corresponds
to hidden conclusions; such conclusions can never be made visible. Our new exponentials
A<B := !A⊗B and AnB := ?A`B are De Morgan variants of intuitionistic implication:
A<B = ∼(A⇒ ∼B), AnB = ∼A⇒ B.

The multiplicative units 1 and⊥⊥⊥ therefore disappear, since one could otherwise recover
!A := A < 1. However, “semantically” speaking, units do make sense as neutrals. This
is a typical conflict between derealism which relies upon an independent, tightly knitted
approach, and realism which respects anything looking like a logical connective, even if
this means loosening the screws. This dilemma can be described as the exposure of a
prejudice.

2. The locative layer

We define an analytic (i.e., meaningless, locative) layer in which answers dwell.

2.1. Unification and matching

We consider, once for all, denumerably many functional symbols of any arity as well as
variables x1, x2, . . .. They can be used to build terms x1, f(x3), g(f(x1), a), etc.

An equation t = u between terms can be solved by means of substitutions, i.e., values for
all variables, even those not occurring in t, u: x1 = θ1, x2 = θ2, . . .; if θ is the substitution
x1 → θ1, x2 → θ2, . . ., then tθ := t[θ1/x1, θ2/x2, . . .] denotes the result of the replacement
of the xi with the θi. We say that t, u are unifiable when tθ = uθ for some unifier (i.e.,
substitution) θ. The point is that substitutions do compose, hence Herbrand’s result
(1930):
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Theorem 1 Assume t, u unifiable; there is a mother of all unifiers for t, u, i.e., a sub-
stitution θ0 such that any unifier θ for t, u can be uniquely written θ0θ

′.

This principal unifier is therefore unique up to usual nonsense.
Matching is, so to speak, unification with bound variables: in order to match t and

u, we first change their respective variables to make them distinct, then proceed with
unification. Therefore, while f(g(x1)) and f(x1) are not unifiable, they are matchable:
f(g(x2)) = f(x1) admits the principal unifier x2 := x2, x1 := g(x2). Terms which do not
match are styled disjoint: their associated projections (sec. A.1) are indeed orthogonal.

2.2. Stars and constellations

A star J t1, . . . , tn+1 K consists in n+1 terms with exactly the same variables; these terms,
the rays of the star, must be pairwise non-matchable, i.e., disjoint. If σ = J t1, . . . , tn+1 K
is a star and θ is a substitution, then σθ := J t1θ, . . . , tn+1θ K is still a star.

A constellation is a finite set of stars; the variables occuring in a constellation are
bound, i.e., local to each of its stars. The rays issued from the stars of the constellation
must too be pairwise disjoint, i.e., not matchable.

Stars are a symmetric alternative to the flows of annex A.1; the dispute between
the two versions is still not completely settled. The unreachability of a star with no
ray explains the exclusion of closed (empty) stars. The fact that the variables must be
exactly the same comes from endless complications coming from “irrelevant” variables
that may disappear during evaluation. Finally, it is obvious that the rays of a star should
be distinct; hence, since stars are bound to be substituted, not unifiable. But our request
is the stronger “not matchable”: this is because a star may be combined with itself to
form a diagram.
Colours are nothing but specific unary symbols used in explicitation. We use pairs of

complementary colours, typically magenta/green , yellow/blue and cyan/red 5. We
assume that all terms using colours are of of the form c(t) where c is the colour symbol
and t does not use any colour. Instead of writing green (t), we rather paint t in green,
i.e., write t ; in the same way, magenta(t), blue (t), yellow(t) become t, t , t.

Colouring being but a notational convention, two terms of different colours are disjoint.

2.3. Normalisation

A coloured constellation is explicit (cut-free) when uncoloured, implicit otherwise. The
purpose of evaluation is to turn an implicit constellation into an explicit one by matching
rays of complementary colours.

In order to normalise (i.e., evaluate) a constellation, we first form its diagrams, i.e., all

5 Pairs of complementary colours are easily identified, since the additive ones are but boxings of their
substractive complements : blue vs. yellow, green vs. magenta, red vs. cyan. Moreover additive

colours, e.g., green and blue , are used as conclusions, substractive ones, e.g., magenta and yellow,
as premises.
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trees (in the topological acception) obtained by plugging N + 1 stars of the constellation
by means of N edges, i.e., formal equations between rays of complementary colours, e.g.,
t = u. All diagrams can be obtained in the following incremental way, starting with
a single star: we select a free coloured ray in the diagram, i.e., a coloured ray not yet
involved in an edge and pair it with any ray of the complementary colour occurring in
the constellation, thus aggregating a new star to the diagram. Since diagrams may reuse
stars, a constellation is likely to generate infinitely many diagrams.

The actualisation of a diagram consists in matching the uncoloured terms underlying
each edge: t = u becomes the actual equality tθ = uθ. Most actualisations fail; we are
basically concerned with correct diagrams, those for which actualisation succeeds.

The following strong normalisation conditions knit blocks 2 and 1 by explaining how
a performance may produce a constat (result, output):

1 There are only finitely many correct diagrams. In other terms, for an appropriate N ,
all diagrams of size N + 1 fail. Since a diagram of size N + 2 contains diagrams of
size N + 1, there is no point in forming diagrams of bigger sizes.

2 There is no closed (i.e., without free ray) correct diagram.

We define the residual star of a correct diagram as made of the actualised free rays of the
diagram. And the normal form of a strongly normalising constellation as the (finite) set of
its uncoloured residual stars. We must however prove that this is actually a constellation.
Condition 2 excludes the presence of a star without ray; it remains to prove that all
residual rays are pairwise disjoint.

Take two diagrams whose free rays are uncoloured, with (before actualisation) a com-
mon free ray s; starting from s, the two diagrams must first disagree on some edge, e.g.,
t = u vs. t = v, thus inducing actualisations tθ, tθ′. Since u, v are disjoint, so are the
eventual actualisations of s in both diagrams: here we use the fact that the variables
are exactly the same. Take now the case where the two s (say, s1, s2) are part of the
same diagram: there is a path leading from s1 to s2 through edges T1/U1, . . . , Tn/Un,
with Ti, Ui = ti , ui or ti, ui . We can handle this case as if s1, s2 were in distinct di-
agrams, unless there is an automorphism σ of the diagram such that σ(s1) = s2; if
s3 := σ(s2) 6= s1, then s1, s2, s3, . . . , sk = s1 would form a cycle in the diagram. If
σ(s2) = s1, then T1 = Un, T2 = Un−1, . . . , Tn = U1. If n = 2m, then Tm = Um, which
is impossible, since Tm, Um are of distinct colours; n = 2m + 1 is impossible too, since
there would be a star with equal rays Um, Tm+1.

By the way, condition 1 implies the following “condition 3”:

3 If t , u are two free rays of complementary colours in an actualised diagram D, there
are no substitutions θ, θ′ such that tθ = uθθ′.

One could otherwise plug D ad libitum with itself, by means of the edge t = u:
Dθ+Dθθ′+Dθθ′θ′+ . . . would provide actualisations for these arbitrarily large diagrams.

2.4. The Church-Rosser property

When dealing with normalisation, a single pair of colours is enough. However, in view of
the synthetic aspects of logic, we may need to perform nomalisation in two steps, which
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requires a second pair of colours. Here remember that colours are just a convenience,
therefore that the additional colours blue and yellow are but ordinary unary symbols
that we may view as uncoloured on request. In presence of two pairs of colours, one can:
— Either normalise all edges green/magenta and blue/yellow.
— Or normalise the edges green/magenta so as to get a normal form still harbouring

the colours blue/yellow, then normalise the edges blue/yellow.
The Church-Rosser property says that the two methods yield the same normal form;
as a corollary, a third method (first blue/yellow, then green/magenta) is equivalent
to those two. Also, if the first method is strongly normalising then the second one is
(twice) strongly normalising. The converse fails in presence of stars of arity > 2: the lone
star J x , x, x K contradicts condition 3 of strong normalisation; but normalisation in two
steps, first green/magenta (yielding an empty constellation), then blue/yellow works.

A solution to this minor problem consists in introducing uncoloured duplicates gr, mg
of the colours green ,magenta and in adding the stars J x , mg(x) K, Jx, gr(x) K to our
constellation; since x matches all terms t, rays are no longer disjoint, but this relaxation
poses no problem as we shall see in (Gir16). If we normalise this expanded constellation,
the normal form contains copies of the coloured residual stars in which green and
magenta have been replaced with gr and mg. In presence of two pairs of colours, we should
add two more additional stars, say J x , ye(x) K, Jx, bl(x) K. The discrepancy between one
and two steps disappears: J x , x, x K+J x , mg(x) K+Jx, gr(x) K+J x , ye(x) K+Jx, bl(x) K
yields, after normalising the edges green/magenta, the normal form J x , x, gr(x) K +
J gr(x), mg(x) K + J x , ye(x) K + Jx, bl(x) K which does not normalise.

A satisfactory solution is therefore at hand, provided we use the version of constel-
lations of (Gir16). If the additional stars J x , mg(x) K, Jx, gr(x) K, . . . are systematically
added to coloured stars, the normal forms thus obtained, the explicit forms, enjoy a
full Church-Rosser property. Usual normal forms are just what remains of explicit forms
when we remove all stars making use of the extra symbols gr, mg, . . ..

3. Proof-nets, vehicles and gabarits

We now use the analytic layer to revisit proof-nets, see e.g., (Gir11b). The point is to
provide us with a couple of examples coming from multiplicative logic.

3.1. Locativity

In order to reach an analytic, i.e., meaningless layer, we must get rid of syntactical
decorations so as to describe proof-nets in a purely locative way6: a proof of `A,B,C
will be represented by means of unary functions pA, pB , pC which distinguish between
the basic locations available in the sequent, those of the subpropositions of A, B, C. We
could emphasise the oblivion of the syntax by using p1, p2, p3, but this would compel us
into a systematic and pedantic indexing of sequents, e.g., `A1, A2, A3.

6 Only the locations matter: Locus Solum.
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3.2. Vehicles

Let us choose, once for all, distinct constants l, r and a binary function letter “ · ”. To each
proof π we associate its vehicle, i.e., a constellation π•; this constellation is uncoloured.

Identity axiom: if π is the axiom `A,∼A, then π• := J pA(x), p∼A(x) K.
`-rule: if the proof π of `Γ, A`B comes from a proof ν of `Γ, A,B, then π• := ν• in

which pA and pB are now defined by pA(x) := pA`B(l · x), pB(x) := pA`B(r · x).
⊗-rule: if the proof π of `Γ,∆, A ⊗ B comes from proofs ν of `Γ, A and µ of `∆, B,

then π• := ν•+µ•, with pA, pB defined by pA(x) := pA⊗B(l·x), pB(x) := pA⊗B(r·x).

The vehicle is thus a constellation of axiom links, seen as stars. The rules `,⊗ have been
used to relocate these links. For instance, the axiom J pA(x), p∼A(x) K may relocate as
J pA`(∼A⊗B)(l · x), pA`(∼A⊗B)(r · (l · x)) K.

3.3. Gabarits

We must now make sense of the lower part of the proof-net, the one dealing with the `
and ⊗ links. Each switching involved in the correctness condition induces an ordeal, i.e.,
a coloured constellation. The finite set of these ordeals, called the gabarit, depends on
the sole conclusions of the net.

We already defined the unary functions pA(x) for each proposition and subproposition
of the proof-net. We now introduce qA(x) := pA(g · x), where g is another constant.
The replacement of pA with qA is due to the fact that pA⊗B(x) is not disjoint from
pA(x) := pA⊗B(l · x), in constrast to the qA⊗B(x) w.r.t. the qA(x): the qA provide
disjoint locations for the propositions occurring in the lower part of the proof-net.

Given a proof-net of conclusions Γ, a switch L/R of its` links induces an ordeal, namely
the coloured constellation made of the following stars, written in the style premises/conclusion;
conclusions are green or uncoloured, premises magenta or yellow. The various stars of
an ordeal thus look like lego bricks, that we can superpose one on top on another.

X,∼X: J
pA(x)
qA(x)

K when A is a literal X,Y,∼X,∼Y, . . .

⊗: J
qA(x),qB(x)
qA⊗B(x)

K.

`L: J
qA(x)
qA`B(x)

K + J
qB(x)

K. In terms of graphs, J qB(x) K “terminates” all J qB(t) K.

`R: J
qB(x)
qA`B(x)

K + J
qA(x)

K.

Conclusion: J
qA(x)
pA(x) K when A ∈ Γ, i.e., is a conclusion.

An ordeal thus normalises into a constellation literals/conclusions. By the way, our
ordeals will react in the same way to a general identity link J pA(x), p∼A(x) K and its
η-expansion made of atomic identity links between the literals of A and ∼A.
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4. The spiritual layer

Everything related to the sense is synthetic (spiritual, meaningful), in opposition to the
purely locative, meaningless analyticity.

4.1. Correctness, a.k.a. l’usine

Let V be V painted blue . The correctness criterion thus writes as:

For any ordeal S, V + S strongly normalises into J pΓ(x) K := J pA(x) ; A ∈ Γ K.

This condition is obviously necessary; its sufficiency — which relates the symbolic testing
by means of the ordeals with the proofs in a logical system — is the most elaborate form
of completeness that one can dream of.

The main technical problem with correcteness is that usual proof-nets are, “precon-
strained”, prejudiced: identity links relate “complementary” propositions A,∼A, whereas
nothing of the kind makes any sense locatively speaking. In other terms, our treatment
of literals is completely indistinct: X,∼X,Y are the same, up to their locations. How can
we force an axiom link to relate X with a ∼X (and not a Y , nay another X)?

Here, we must remember that predicate or propositional calculi are convenient and
rather convincing structures, but that a marginal part of them is ill-written. Typically,
the so-called propositional “constants” X,Y which mean nothing by themselves. In order
to find their actual transcendental status, we must move to second order logic — say, to
system F (Gir11b) — a system without constants in which propositions are closable; we
can thus replace the “constants” with propositional variables and proceed with a universal
quantification. What we call first order logic indeed deals with the universal closures
∀X1 . . . ∀XnA of quantifier-free propositions A: the behaviour of such propositions is
extremely simple, especially in view of completeness issues, e.g., the subformula property.
In practice, the universal prefix being compulsory, it is convenient to omit it; and since
variables are treated in a static way, they are easily mistaken for constants.

To make the long story short, when dealing with a proof-net, we must take into account
the implicit second order quantification ∀X on all propositional “constants”. What follows
is part of the treatment of second order logic dealing with the quantifier ∀X. For this,
we must introduce another kind of ordeal, styled cancelling. The correctness relation for
a cancelling ordeal S writes as the cancellation condition:

V + S strongly normalises into the empty constellation 0.

Since two kinds of tests are now performed, cancelling ordeals constitute a minor un-
knitting of blocks 2 and 3. In the companion paper (Gir16), non-determinism will allow
us to sum an ordeal with several cancelling ones; the normal form being the sum of
the possibilities, the usual correctness condition forces the cancellation condition for the
additional parts.

A cancelling ordeal for literals consists in selecting between X and ∼X for each propo-
sitional variable; the selection is done in the same way for all “occurrences” of each
variable. Given such a switching, the ordeal consists of the stars:
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J
qA(l · x), qA(r · x)

K

for any occurrence A of the literals (X/∼X,Y/∼Y, . . .) selected by the switching.
Being extremely sparse, these ordeals have a propensity to die, typically the switch

“X” has nothing to match ∼X: in particular, identity links relating an “occurrence” of
X with one of ∼X will be cancelled. Any other combinations between literals (X/Y ,
X/X, . . . ) can be shown to be incorrect by an adequate switching of both sides: X and
Y since they are independent, X and X since they can be both put to “X”: in the latter

case, the constellation J
qA(l · x),qA(r · x)

K+ J
pA(x)
qA(x)

K+ J
pA(x) ,pB(x)

K+ J
pB(x)
qB(x)

K+

J
qB(l · x),qB(r · x)

K which yields a diagram actualising into J
qB(r · x)
qB(r · x)

K: such a diagram

is the typical vicious circle excluded by “condition 3” of strong normalisation.
Our cancelling ordeals only forbid “incorrect” links between literals. General links can

be reduced — since the approach is insensitive to η-expansion — to links between a
literal and a compound formula; a case that usual ordeals can handle, since the normal
form, if it exists, could not be of the form J pΓ(x) K.

A last warning about these atoms: their treatment occurs in the final stage of the
logical construction, when a universal quantification over propositions is performed, so
that to keep the choice between X and ∼X consistent, always X or always ∼X.

4.2. Cut-elimination

A cut is a conclusion A⊗∼A put between square brackets:

`Γ, A⊗∼A

`Γ, [A⊗∼A]

The rule, so to speak, predicts the erasure of A ⊗ ∼A, i.e., the conclusion `Γ. This
way of expressing the cut has the advantage to keep the cut rule in l’usine (see infra).

Cut-elimination is the actual plugging of pA with p∼A in order to produce a vehicle
which eventually normalises into a proof of `Γ. In order to activate this plugging, we shall
use a pair of complementary colours, typically pA , p∼A and pA, p∼A. To V with pA, p∼A

painted green , i.e., replaced with pA , p∼A , we add the feedback J
pA(x),p∼A(x)

K.
It may be convenient to use different colours when normalising several cuts. Then a

vehicle with two cuts may be painted green and red , with magenta and cyan feedbacks.
As to normalisation, there are three options:

1 Normalise all cuts green/magenta and red/cyan.
2 Normalise the cuts green /magenta, then the residual cuts red/cyan.
3 Normalise the cuts red /cyan, then the residual cuts green/magenta.

The Church-Rosser property equates, modulo some precautions — deal with explicit
forms rather than normal forms—, these three possibilities: hence one pair of colours is
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enough. From this, it will be possible to show the compositionality of cut, hence to develop
a synthetic layer, e.g., a category-theoretic structure, a typical example of synthetic a
priori, of usage. This point is a major knitting of transcendental syntax.

4.3. Syntheticity a priori, a.k.a. l’usage

Proof-nets were introduced to fix the drawbacks of syntax, in particular to provide a
sort of symmetric natural deduction. A sequentialisation result reducing the new notion
to sequent calculus was therefore needed. If this step was a historical necessity, it has
no special transcendental status. We should thus try to understand this step under a
different light and replace sequentialisation with something else, the adequation between
two forms of syntheticity.

Correctness relates the locative vehicle to the spritual gabarit. This is one of the
possible acceptions of the sense, the sense-as-format (i.e., as type), a.k.a. l’usine: the
gabarit formats the vehicle. In Kantian terms, this should be styled synthetic a posteriori :
experience (the testings according to given ordeals) tells us that the proof-net is correct.

The proof-net is d’usine when considered as a vehicle, its gabarit remaining implicit.
But the combination “vehicle + gabarit”, a finite set of constellations7, is analytic, indeed
performative (block 2).

There is, however, another acception of the sense, the sense-as-use: a proof yields con-
sequences, typically corollaries. These consequences are handled by the cut rule, provided
we anticipate the eventual erasure of the propositions between square brackets. But this
cut-elimination relies on a heavy assumption, namely that the choices of gabarits for A
and ∼A are, in some sense, complementary. Since we cannot perform all possible cuts
— there are infinitely many of them —, we must rely on mathematical reasoning, i.e.,
predict. This predictive part of the sense is the synthetic a priori, a.k.a. l’usage. Since it
deals with the potential infinity of all uses, this a priori cannot be completely justified.
Lingers a persistent, althought not quite reasonable, doubt of principle, the one best
expressed by incompleteness.

The fact of using twice the same letter to denote a proposition — the so-called occur-
rences — is the ultimate logical prejudice. Bilocation lies at the very heart of syntheticity:
how could we speak of the sense of a proposition that we can only see once? Now, in the
identity link8 J pA(x), p∼A(x) K, the coincidence between the two “occurrences” is justified
by the “complementarity” between the ordeals for A and ∼A: due to the fact that we
can actually check correctness, A = A belongs in the a posterori of l’usine. The feedback

J
pA(x),p∼A(x)

K is a sort of prediction, namely the convergence of cut-elimination —
furthermore into a correct proof-net: this prediction, which is supposed to work for all
correct proof-nets, cannot be justified by any checking, it belongs in the a priori. This a
priori is the Capitol of thought; but beware of the Tarpeian Rock!

In terms of good old natural deduction, the distinction a posteriori/a priori is present
in the two kinds of extremal propositions, minimal vs. maximal.

7 Indeed a non deterministic constellation, see (Gir16)
8 I prefer to avoid “axiom” which suggests some a priori.
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4.4. Adequation

The adequation between a priori and a posteriori is known as cut-elimination. Incom-
pleteness forbids any elementary cut-elimination theorem for full — second order —
logic. This means that, in system F, the gap between a priori and a posteriori cannot
be totally filled: a small foundational doubt forever lingers. This gap is however limited
in the first order case, where we hardly feel the wind of the bullet of incompleteness.

Take a proof-net with conclusions Γ, [X⊗∼X], and an ordeal J
p∼X(x)
q∼X(x)

K+J
pX(x)
qX(x)

K+

J
qX(x),q∼X(x)
qX⊗∼X(x)

K + J
qX⊗∼X(x)
pX⊗∼X(x) K + S, which normalises into J

pX(x),p∼X(x)
pX⊗∼X(x) K + S.

If V +J
pX(x),p∼X(x)
pX⊗∼X(x) K+S strongly normalises, the same is true ofW+J

pX(x),p∼X(x)
K,

whereW is V with pX , p∼X painted green , which normalises into someW ′ correct w.r.t.
the ordeal S: this handles the case of an atomic cut.

Take a cut on a complex proposition A⊗B, i.e., a net V with conclusions Γ, [C] with
C := (A⊗B)⊗(∼A`∼B). We prove cut-elimination by showing that we can consider V
as a net with conclusions Γ, [A⊗∼A], [B⊗∼B]. In other terms, the analytics is unchanged
(the same V) only the synthetics is modified. We must therefore prove that correctness
is preserved by this modification of ordeals.

An ordeal for Γ, [C] is a union T +T ′+S, where T is either J
q∼A(x)

q∼A`∼B(x)
K+J

q∼B(x)
K

or J
q∼B(x)

q∼A`∼B(x)
K + J

q∼A(x)
K and T ′ := J

qA(x),qB(x)
qA⊗B(x)

K + J
qA⊗B(x),q∼A`∼B(x)

qC(x)
K +

J
qC(x)
pC(x) K and S := J

pA⊗B,p∼A`∼B
pC(x) K T + T ′ + S normalises into U which is either

U1 := J
qA(x),qB(x),q∼A(x)

pC(x) K + J
q∼B(x)

K or U2 := J
qA(x),qB(x),q∼B(x)

pC(x) K + J
q∼A(x)

K.

Since V +S+T +T ′ strongly normalises into J pΓ(x), pC(x) K, V +S strongly normalises
into some W s.t. W + U normalises into J pΓ(x), pC(x) K. The part of W contributing to
the normal form is made of three stars containing the various rays of pΓ(x) as well as
qA(x) , qB(x) , q∼A(x) , q∼B(x) . qA(x) and qB(x) belong to two different stars ]1 and
]2; using U1, we see that q∼A(x) can belong to neither of stars ]1, ]2; using U2 we see
that q∼B(x) can belong to neither of stars ]1, ]2. Hence they both belong to star ]3.

Rewriting the cut amounts at replacing Γ, [C] with Γ, [D], [E], with D = A⊗∼A,

E = B ⊗∼B. An ordeal for these conclusions is O = S + J
qA(x),q∼A(x)

qD(x)
K + J

qD(x)
pD(x) K +

J
qB(x),q∼B(x)

qE(x)
K+J

qE(x)
pE(x) K which normalises into S+J

qA(x),q∼A(x)
pD(x) K+J

qB(x),q∼B(x)
pE(x) K.

Due to the fact that the three stars of the normal formW of V +S contain either qA(x)
(]1) or qB(x) (]2) or J q∼A(x) , q∼B(x) K (]3), it is easily shown that V + O strongly
normalises into J pΓ(x), pD(x), pE(x) K.

Of course, we are still in need of an additional argument showing the convergence of
the rewriting; but then we enter familiar waters.



Transcendental syntax I: deterministic case 15

5. Exponentials revisited

5.1. A strategic retreat

Transcendental syntax tells us that there can be nothing like the exponentials !A and
?A; one must thus operate a strategic retreat in direction of intuitionistic implication,
in other terms, to restrict the use of !A and ?A to combinations A< B := ∼(A ⇒ ∼B)
(i.e., !A ⊗ B) and A n B := ∼A ⇒ B (i.e., ?A ` B). Since !A can be defined by means
of !A := A < 1, this means that the multiplicative constants are rejected: they have no
conditions of possibility.

Since intuitionistic implication A⇒ B is sometimes noted BA, we keep the terminology
“exponentials” for < and n. As to notations, 7 and 6 are inadequate, since symmetric
left/right; <,n are asymetric, with the hint of an order, from left to right.

5.2. Hidden conclusions

Let us make an interesting experiment, namely, to underline some conclusions A (not all

of them) in a proof-net. In terms of ordeals, this means replacing J
qA(x)
pA(x) K with J

qA(x)
K.

The correctness criterion for a net with conclusions `Γ,∆ writes:

For any ordeal S, V + S strongly normalises into J pΓ(x) K.

In other terms, the ∆ are not visible in the output: they are, so to speak, hidden.
Hiding conclusions is indeed a relaxation of the usual correctness criterion: nobody

forbids us from restoring the hidden conclusion A, i.e., from reverting to J
qA(x)
pA(x) K; let

T := S \ J qA(x)
K + J

qA(x)
pA(x) K. If V +S strongly normalises into J pΓ(x) K, so does V +T

whose normal form writes J pΓ(x), pA(t1), . . . , pA(tn) K for appropriate disjoint t1, . . . , tn.
We see that underlining is a way to handle structural rules (n = 0 is weakening, the

ti handle the various copies in a contraction). There is no way to foresee neither the
number n of instances nor the actual values of the ti: they depend upon the ordeal S.
This is why the conclusion A had to be hidden. This also explains the impossibility of a
connective like ?A which would, miraculously, guess the invisible!

As far as correctness (i.e., l’usine) is concerned, we thus grounded structural rules. But
this is not enough: correctness should guarantee (modulo some reasoning) cut-elimination
(i.e., the adequation usine/usage). Here our previous experience of GoI for exponentials
(performative, block 2) is most precious: since (Gir89), exponentials are handled by
means of tensorisations9 u · v, where the second component stands for the duplication
instructions. It is thus legitimate to replace the pA(ti) with pA(ti · ui).

We can approximate this constraint by reverting to J
qA(x)
pA(x) K in the hidden conclusions

so as to get the slightly awkward reformulation:

For any ordeal S, V + S strongly normalises into some J pΓ(κ) + p∆(x · T ) K.

9 See annex A.2.
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By p∆(x·T ), I mean that each A in ∆ yields a certain number of “copies” pA(x·ti) of pA(x).
Using techniques inspired from the switching nR (infra), this convenient formulation can
be put back into the original form where A is really hidden. But this has only an interest
of principle.

5.3. Vehicles

Just to show that we are dealing with familiar logic, let us see how proofs of sequent
calculus (annex B) fit in this pattern. Observe that, whereas the formula A yields terms
pA(t) when visible, it yields terms pA(t · u) when hidden.

Dereliction: if the proof π of `Γ,∆, A comes from a proof ν of `Γ,∆, A, then π• := ν•

in which the terms pA(t) have been replaced with pA(t · d), where d is a constant.
Weakening: if the proof π of `Γ,∆, A comes from a proof ν of `Γ,∆, then π• := ν•.
Contraction: if the proof π of `Γ,∆, A comes from a proof ν of `Γ,∆, A′, A”, then

π• := ν• in which the terms pA′(t · u) (resp. pA”(t · u)) have been replaced with
pA(t · (l · u)) (resp. pA(t · (r · u))).

n-rule: if the proof π of `Γ,∆, AnB comes from a proof ν of `Γ,∆, A,B, then π• := ν•,
with pA, pB defined by pA(x) := pAnB(l · x), pB(x) := pAnB(r · x).

<-rule: if the proof π of `Γ′,∆,∆′, A < B comes from proofs ν of `∆, A and µ of
`Γ′,∆′, B, we define pA(x) := pAnB(l · x), pB(x) := pA<B(r · x). We modify ν• into
ν•1 by replacing all pA(t) with pA(t ·y), with y a fresh variable. Due to this variable, ν•1
is no longer a constellation; we homegeneise ν•1 into ν•2 by replacing all terms pC(t ·u)
with C ∈ ∆ with pC(t · (u · y)). We define π• := ν•2 + µ•.

5.4. Links

The n and < links are written as follows:

A B

A<B

A B

AnB

A is short for an unspecified stock of “occurrences” of A, maybe none, like the [A] of
natural deduction was short for an unspecified stock of discharged hypotheses. This link
thus includes weakening and contraction.

5.5. Gabarits

We now need to associate ordeals to exponentials; for this, we shall anticipate upon the
future introduction (Gir16) of non-determinism, since non deterministic ordeals will be
used to handle n. < is also responsible for a complexification of the structure: a non
linear term must be used in the switching <δ.

<δ: J
qA(x · x),qB(x)

qA<B(x)
K.
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<l: J
qA(x · l),qB(x)

qA<B(x)
K.

nR: J
qB(x)
qAnB(x)

K + J
qA(x · y)

K + J
qA(x′ · y′)

K, except if x = x′.

nL′ : J
qA(x · y)
qAnB(x · y)

K.

First start with <: the part of the ordeal leading to qA(x) := qA<B(l · x) must be “ten-
sorised” with an extra variable: this means that any ray occuring in a star “above” A of
the form T (resp. T , T ), with T = pA(t) becomes T ⊗ y (resp. T ⊗ y, T ⊗ y), with

T⊗y := pA(t·y). The two switchings circumvent the non-homegeneity of J
qA(x · y),qB(x)

qA<B(x)
K.

If we remove the switch <δ in a correct proof-net, we get three stars corresponding to
A,B,A < B, say ]1, ]2, ]3. The star ]3 must contain qA<B(x), hence ]1 must contain
qA(x · t) with t unifying with both of x, l. The only possibility is that of a fresh variable
y: ]1 contains qA(x · y) . The exotic possibility — which cannot be excluded in a non
deterministic setting — of a sum qA(x · x) + qA(x · l) would lead to an incorrect normal
form, typically pΓ(x) + pΓ(l) whatever switching we choose.

The switching nR := J
qB(x)
qAnB(x)

K+ J
qA(x · y)

K+ J
qA(x′ · y′)

K emphasises the names

of the variables, which usually hardly matter. The part J
qB(x)
qAnB(x)

K+J
qA(x · y)

K induces

instanciations J qA(ti · ui) K: we would like to ensure that the ti are all equal to x. This is

why we introduce a non deterministic alternative between J
qA(x · y)

K and. . . itself (noted

J
qA(x′ · y′)

K). A coherence relation governs the formation of diagrams: a J
qA(x′ · y′)

K

may coexist with some J
qB(x)
qAnB(x)

K or J
qA(x · y)

K in the same diagram only if the

actualisations of x′ and x are distinct. Which is possible only in case of an actualisation
qA(ti · ui) with ti 6= x, in case all the qA(ti · ui) could be plugged as well to the variant
J qA(x′ · y′) K; this would produce a duplicate of the normal form, typically pΓ(x)+pΓ(x).

The switching nL′ is a sort of compensation for the impossibility of a plain left switch-
ing for n. The switching is however atypic: any ordeal using it is cancelling, i.e., V + S
must normalise into the empty constellation 0.

Let us explain how this cancellation works: the right switching already tells us that, on
the side of A, we actually have a certain number of instances qA(x · ui) . The normal form
is obtained by plugging nR with a constellation made of two stars, ]1 = J qAnB(x), . . . K,
]2 := J qB(x) , . . . K; a certain number of instances of qA(x · ui) are dispatched between
]1 and ]2. nL′ plugs with the sole ]1; if ]1 = J qAnB(x), qA(x · u) , . . . K, then ]1 + nL′

contains the actualised diagram J
qAnB(x)
qAnB(x · u)

K: this contradicts “condition 3” of strong

normalisation. The possibility of some qA(x · ui) in ]1 being excluded, the constellation
can only “die”.
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5.6. Nested exponentials

The replacement of pA(t) with pA(t) · y corresponds to the building of an exponential
box, the main — and by no means minor! — novelty being that the contents are no
longer isolated. Now, what about nested boxes? The nesting number of a literal P of a
conclusion A (or A) being the number of ! and ? crossed when passing from P to A, we
easily see that an original identity link J pX(x), p∼X(x) K eventually becomes something
like J pX((. . . (x · tm) . . .) · t1), p∼X(x)((. . . (x · un) . . .) · u1) K, where m and n are the
respective nesting numbers of X and ∼X.

This nesting, predictible from the logical formulas, must be taken into account when de-
vising ordeals. Typically, the cancelling ordeal associated with the choice of the literal X

(section 4.1) should include J
qA((. . . ((l · x) · y1) . . .) · yn),qA((. . . ((r · x) · y1) . . .) · yn)

K
when A is an occurrence of X of nesting number n.

5.7. Cut-elimination

Cut-elimination compels us into considering hidden cuts [A⊗∼A]. We can thus replace
a cut Γ,∆, [C], with [C] = [(A<B)⊗ (∼An∼B)] with Γ,∆, [A⊗∼A], [B ⊗∼B] while
preserving correctness. In order not to complicate the discussion with irrelevant issues,
we assume that ∆ = ∅.

Consider the sole switching <l,nR; using the same notations as in the multiplicative
case, we get thatW+U normalises into J pΓ(x), pC(x) K, with C := (A<B)⊗(∼An∼B).
The part of W contributing to the normal form is made of three stars containing the
various rays of pΓ(x) as well as qB(x) , q∼B(x) , various q∼A(x · ti) and qA(x · y) . Star ]1
contains qA(x · y) , star ]2 contains qB(x) , star ]3 contains q∼B(x) . By using the switch
nL′ , we conclude (see supra the explanation of the link) that the q∼A(x · ti) cannot
belong to stars ]1, 2 that would be erased. From this, it is easy to conclude that the
change of syntheticity to Γ,∆, [A⊗∼A], [B⊗∼B] does preserve correctness. The hidden

cut [A⊗∼A] consists in the star J
pA(x · y),p∼A(x · y)

K, which matches the q∼A(x · ti)

and qA(x · y) ; which amounts at matching, for each i, the star J
pA(x · ti),p∼A(x · ti) K

with q∼A(x · ti) and qA(x · ti) . The replacement of y with ti is made possible because
q∼A(x · ti) and qA(x · y) belong to distinct stars ]3 and ]1.

We just introduced hidden cuts; do they normalise? Replacing J
qA⊗∼A(x · y)

K with

J
qA⊗∼A(x · y)
pA⊗∼A(x · y) K in an ordeal yields J pΓ(x), pA⊗∼A(x · t1), . . . , pA⊗∼A(x · tn) K, a normal

form which looks like n visible cuts, with two differences. First that n and the ti may
depend upon the ordeal, second that these cuts cannot be switched independently. The
second problem, the only serious one, will be fixed in (Gir16) by the introduction of some
non-determinism at the level of the switchings `L/`R.
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Appendix A. Geometry of Interaction (GoI)

A few reminders about GoI and its relation to our present analytics.

A.1. The unification algebra

A.1.1. Flows A flow is an expression t↼ t′ where t, t′ are terms with quite the same
variables. These common variables are internal to the flow, in other terms bound. Com-
position between t↼ t′ and u↼u′ is obtained by matching t′ and u. If θ is the principal
unifier, we define composition by (t↼ t′)(u↼u′) := tθ↼u′θ. Composition is thus a par-
tial operation; if we formally add an empty flow 0 to take care of a possible failure of the
matching: (t↼ t′)(u↼u′) := 0, composition becomes associative, with neutral element
I := x↼x.

If T is the set of closed terms, then any functional term t induces a subset [t] ⊂ T ,
namely the set of all closed t0 which unify with t; t, t′ are disjoint when they don’t match,
i.e., when [t] ∩ [t′] = ∅. Any flow t↼ t′ induces a partial bijection [t↼ t′] between the
subsets [t′] and [t] of T . Let us fix a constant c; if t0 is closed, then [t↼ t′]t0 is defined
when (t↼ t′)(t0↼c) 6= 0, in case it writes [t↼ t′]t0↼c. The condition “quite the same
variables” ensures that [t↼ t′]t0 is closed and that [t↼ t′] is injective. Any flow u↼u is
idempotent; its associated function is the identity of the subset [u] ⊂ T .

A.1.2. The convolution algebra One can introduce the convolution algebra of the monoid,
i.e., the set of finite formal sums

∑
λiφi where the φi are flows and the λi are complex

coefficients, the improper flow 0 being identified with the empty sum. This algebra acts
on the Hilbert space `2(T ) by means of (t↼ t′)(

∑
i λiti) :=

∑
i λi[t↼ t′]ti. The invo-

lution (
∑
λi(ti↼t′i))

∗ :=
∑
λ̄i(t′i↼ti) is implemented by the usual adjunction. The

idempotents t↼ t correspond to the projections on the subspaces `2([t]) and t↼ t′ in-
duces a partial isometry of source `2([t′]) and target `2([t]). The early versions of GoI, see
(Gir89), did associate to proofs finite sums of flows. These sums were partial isometries;
u =

∑
ti↼t′i is a partial isometry (i.e., uu∗u = u) if the targets ti are pairwise dis-

joint, not unifiable, idem for the t′i. The operators of GoI are indeed partial symmetries
(u = u3 = u∗): typically the identity axioms (t↼ t′) + (t′↼t) (t, t′ disjoint).

A.2. A few examples

The unification algebra internalises the major algebraic constructions.

A.2.1. Matrixes If I is a finite set of closed terms, the I×I matrix (λij) can be naturally
represented by

∑
ij λij (i↼ j).

A.2.2. Direct sums The flows P := p(x)↼x,Q := q(x)↼x induce an isometric em-
bedding of `2(T ) ⊕ `2(T ) in `2(T ): x ⊕ y 7→ [P ]x + [Q]y. The isometricity comes from
P ∗P = Q∗Q = I, P ∗Q = Q∗P = 0. The embedding is not surjective: this would require
PP ∗ +QQ∗ = I, in other terms that every term matches either p(x) or q(x).
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P and Q have been heavily used in the early GoI, in particular for multiplicatives
— and, modulo tensorisation with I, for contraction. They enable one to change the size
of matrices in a flexible way. Usually, the only possibility is to divide the size, typically
Mmn(C) 'Mm(Mn(C)) replaces a mn×mn matrix with a m×m matrix whose entries
are n × n matrices, i.e., blocks of size n × n. Thanks to P,Q, one can replace a 3 × 3
matrix with a 2× 2 one (with four “blocks” of sizes 2× 2, 2× 1, 1× 2, 1× 1).

A.2.3. Tensor products The tensor product of two flows makes use of a binary function
“·” and is defined by (t↼ t′) ⊗ (u↼u′) := t · u ↼ t′ · u′; the variables of the two flows
must first be made distinct. This corresponds to an internalisation of the tensor product,
which plays an essential role in the handling of exponentials, i.e., of repetition. The flow
T := (x ·y) ·z ↼ x ·(y ·z) compensates the want of associativity of the internal tensor:
T ∗(((t↼ t′)⊗ (u↼u′))⊗ (v↼v′))T = (t↼ t′)⊗ ((u↼u′)⊗ (v↼v′)).

A.2.4. Crown products In the same style as T , the flow
σ := x1 · (x2 · (. . . (xn−1 · xn) . . .)) ↼ xσ(1) · (xσ(2) · (. . . (xσ(n−1) · xσ(n)) . . .)) induces a
permutation of the constituents af a n-ary tensor. Crown products play an important
role in GoI, typically in the interpretation of logspace computation (Gir12).

A.3. Execution

Geometry of Interaction represents proofs by pairs (u, σ), where u, σ are object of the
convolution algebras. The feedback σ is a partial symmetry which represents the cuts.
The normal form of (u, σ) is (v, 0), with

v := (I − σ2)u(I − σu)−1(I − σ2)

Termination is expressed by the nilpotency of σu, hence the finite expansion:

v := (I − σ2)(u+ uσu+ uσuσu+ . . .+ (uσ)Nu))(I − σ2)

A.4. From flows to stars

The original proof-net criterion (Gir87) was formulated in terms of trips, translated
as permutations, thus unitary operators in von Neumann algebras: this is Geometry of
Interaction, see, e.g., (Gir11a). Taking into account the finiteness of the analytic layer,
von Neumann algebras have been replaced with the unification algebra.

From the start, an alternative approach, graphlike, was proposed, namely the Danos-
Regnier criterion (DR89). The graph approach is generalised by sorts of “thick graphs10”
by Seiller (Sei13). My constellations are the common generalisation of thick graphs and
unification algebra.

Since GoI is, in practice, restricted to hermitian operators, it does not harm to restrict
to symmetric sums of flows, typically (t↼ t′) + (t′↼t) which becomes J t, t′ K. However,

10 Graphes épais.
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since our objects are no longer operators, there are some difficulties in defining the
analogue of composition, which only occurs in configurations like uσ. We can see σ as
the swapping between two complementary colours, to the effect that (uσ)Nu is made
of all actualised diagrams of size N + 1: each sigma denotes an edge. Nilpotency is
rendered by requiring that all diagrams of a certain size N are incorrect. The pre- and
post-restrictions of v to I − σ2 corresponds to the fact that we eventually keep the sole
uncoloured actualised diagrams.

The graphlike approach — stars and constellations — still remains more user-friendly.
However, flows are more flexible, since they are not committed to any kind of symmetry.
Typically, the work of Bagnol (with Aubert, Pistone and Seiller) (ABPS14) which adapts
my previous work on logspace — originally in terms of vN algebras — in terms of flows,
exploits this additional flexibility. Another superiority of flows is that they have a more
satisfactory structure w.r.t. the Church-Rosser property: the discrepancy observed in
section 2.4 between normalisation in one and two steps is due to the presence of stars of
arities > 2.

Appendix B. A sequent calculus

Sequents are of the form `Γ,∆, with Γ 6= ∅.

B.1. Identity/Negation

(Id)
`∼A,A

`Γ,∆, A⊗∼A
(Cut)

`Γ,∆, [A⊗∼A]

`Γ,∆, A⊗∼A
(Cut)

`Γ,∆, [A⊗∼A]

The two cut rules are nothing but some claim about the conclusion, namely that the
configuration [A⊗∼A] or [A⊗∼A] can be eliminated. If we believe — and we usually
do — in deduction, we can thus ignore these bracketed propositions; if not, then we must
see them as a prediction and/or a commitment: their elimination. This is the only place
where the synthetic a priori occurs explicitly. This form of syntheticity has, of course, a
deep influence on the choice of rules: the pairs ⊗/`, </n must match both on a priori
grounds, cut-elimination, but this remains implicit. They must also match on a posteriori
grounds, typically when we decompose an identity link `A,∼A into its constituents —
what is known as η-expansion.

B.2. Structural rules

Underlined propositions are handled by means of structural rules: dereliction, weakening,
contraction (and exchange, omitted).

`Γ,∆, A
(D)

`Γ,∆, A

`Γ,∆
(W)

`Γ,∆, A

`Γ,∆, A,A
(C)

`Γ,∆, A
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B.3. Logic

`Γ,∆, A `Γ′,∆′, B
(⊗)

`Γ,Γ′,∆,∆′, A⊗B

`Γ,∆, A,B
(`)

`Γ,∆, A`B

`∆, A `Γ′,∆′, B
(<)

`Γ′,∆,∆′, A<B

`Γ,∆, A,B
(n)

`Γ,∆, AnB
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