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‖93a If we look upon the intellectual relationships <geistige Beziehungen>

of the mathematical sciences to philosophy as they have developed since the

times of the Enlightenment, we notice with satisfaction that mathematical

thought is now at the point of regaining the powerful influence on philo-

sophical speculation that it possessed up to Kant’s time, but then suddenly

lost completely. That sudden averting from mathematical thought was in-

fluenced by the general estrangement from the spirit of the period of the

Enlightenment that took place at the beginning of the nineteenth century.

This detachment of philosophy from the exact sciences was, however,

only a unilateral one: While the dominant philosophy became completely
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estranged1 from mathematics, a philosophical orientation ‖93b evolved more

and more among mathematicians.

The most important reason for this was that mathematics had grown

far beyond the framework within which it had moved up to the time of

Kant. Not only had the domain of investigated facts grown considerably, but

the whole form of the investigations became grander and the entire method

more encompassing. The concept-formations <Begriffsbildungen> rose to a

higher level of generality; the meaning of the formula became less important

than conceptual abstractions and leading systematic ideas. Furthermore, the

attitude toward the foundations and toward the object of the mathematical

sciences also changed.

The task of geometry was understood in broader terms. Formation of

geometrical concepts became more general and freed themselves more and

more from the connection to spatial representation <Vorstellung>. In the re-

cently developed geometrical theories, moreover, intuition of space no longer

had the significance of an epistemological foundation, but was rather ‖94a

employed merely in the sense of an intuitive analogy.

In arithmetic, research experienced an essential extension of problem for-

mulation as well. On the one hand, the concepts of number <Anzahl> and of

order <Ordnung> were generalized, through the invention of set theory, in a

completely new way and applied to infinite totalities. On the other hand, the

development of algebra led to numbers and quantities no longer exclusively

1Among those philosophers who represented in this respect a laudable exception,

Bolzano must be mentioned in particular; he gave the first rigorous foundation of the

theory of real numbers.
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viewed as objects of investigation; rather, calculatory formalism itself was

made an object of study, and one made, very generally, the consideration of

formalisms one’s task. Numbers as well as quantities now appeared only as

something special, and the more one examined their lawfulness from more

general points of view, the more one became unaccustomed to taking this

lawfulness for granted.

In this way, the whole development of mathematics moved on: to rob of

its appearance of exclusiveness and finality all of that which was previously

considered to be the only object of research, and whose basic properties were

considered as something to be accepted by mathematics and neither capa-

ble nor in need of mathematical investigation. The framework was burst

which earlier philosophical views, even Kantian philosophy, had marked out

for mathematics. Mathematics no longer allowed philosophy to prescribe the

method and the bounds of its research; rather it took the discussion of its

methodological problems into its own hands. In this way the axioms of the

mathematical theories were investigated in regard to their logical relation-

ships, and the forms of inference were subjected to more precise critique as

well. And the more these problems have been pursued, the more mathemati-

cal thought has shown its fruitfulness with respect to them, and it has proved

itself as an indispensable tool for theoretical philosophy.

David Hilbert has contributed in a significant way to this development,

which extends to the present. What he has accomplished in this field will be

described in what follows.

When Hilbert applied himself to the problems that were to be solved

concerning the foundations of mathematical thought, he had at his disposal
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not only his comprehensive command of the mathematical methods, but

he was also above all, as it were, predestined for the task by his human

disposition. For mathematics had for him the significance <Bedeutung> of a

world view, and he went about those fundamental problems with the attitude

of a conqueror who endeavors to secure for mathematical thought a sphere

of influence which is as comprehensive as ‖94b possible.

The main point, while pursuing this goal, was to avoid the mistake of

those extreme rationalist thinkers who thought that complete knowledge of

everything real <alles Wirkliche> could be attained by pure thought. This

could not be a question of, say, incorporating into mathematics all knowledge

of the factual [Tatsächliches]; rather it was necessary, for extending the realm of

mathematics in the widest possible way, to delineate sharply the boundaries

between the mathematical and the nonmathematical; that would actually

allow one to claim for mathematics all mathematical components in cognition

<alle mathematischen Bestandteile im Erkennen>.

Hilbert actually understood the problem also in this way. His first and

largest work in the field of methodological questions is the Foundations of

Geometry, which appeared in 1899. In this work, Hilbert laid out a new

system of axioms for geometry that he chose according to the criteria of

simplicity and logical completeness, following Euclid’s concept-formations as

closely as possible. He divided the whole system of axioms into five groups of

axioms and then investigated more precisely the share the different groups of

axioms (as well as single axioms) have in the logical development of geometry.

Through its wealth of new, fruitful methods and viewpoints, this investi-

gation has exercised a powerful influence on the development of mathematical

4



research. However, the significance of Hilbert’s foundations of geometry by

no means lies only in its purely mathematical content. Rather, what made

this book popular and Hilbert’s name renowned, far beyond the circle of his

colleagues, was the new methodological turn that was given to the idea of

axiomatics.

The essence of the axiomatic method, i.e., the method of logically de-

veloping a science from axioms and definitions, consists according to the

familiar conception in the following: One starts with a few basic proposi-

tions <Grundsätze>, of whose truth one is convinced, puts them as axioms

at the top, and derives from them by means of logical inference theorems;

their truth is then as certain as that of the axioms, precisely because they

follow logically from the axioms. In this view, attention is focused above all

on the epistemic character [Erkenntnischarakter] of the axioms. Indeed, orig-

inally one considered as axioms only propositions whose truth was evident

a priori. And Kant still held the view that the success and the fruitfulness

of the axiomatic method in geometry and mechanics essentially rested on

the fact ‖95a that in these sciences one could proceed from a priori knowl-

edge (the axioms of pure intuition and the principles of pure understanding

[Verstand]).

However, the demand that each axiom expresses an a priori knowable

truth was soon abandoned, for, in the manifold occasions that presented

themselves for the axiomatic method, especially in the further development

of physics, it followed, so to speak, automatically that one chose both empir-

ical statements and also mere hypotheses as axioms of physical theories. The

axiomatic procedure turned out to be especially fruitful in cases where one
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succeeded in encompassing the results of multifarious experiences in a state-

ment of general character through positing an axiom. A famous example of

this is that of the two propositions about the impossibility of a perpetuum

mobile of the first and second type ; Clausius put them as axioms at the top

of the theory of heat.

In addition, the belief in the a priori knowledge of the geometrical axioms

was increasingly lost among the researchers in the exact sciences, mainly

as a consequence of non-Euclidian geometry and under the impression of

Helmholtz’ arguments. Thus the empirical viewpoint, according to which

geometry is nothing but an empirical science, found more and more support-

ers. However, this departure from a prioricity <vom Apriorismus> did not

alter essentially the perspective on the axiomatic method.

A more powerful change, however, was brought about by the systematic

development of geometry. Mathematical abstraction had, starting with el-

ementary geometry, raised itself far above the domain of spatial intuition;

it had led to the construction of comprehensive systems <Lehrgebäude>, in

which ordinary Euclidian geometry could be incorporated and within which

its lawlikeness appeared only as one particular among others of equal math-

ematical rights. This opened up a new sort of mathematical speculation by

means of which one could consider the geometrical axioms from a higher

standpoint. It immediately became apparent, however, that this type of con-

sideration had nothing to do with the question of the epistemic character of

the axioms, which had formerly been considered, after all, as the only signif-

icant feature of the axiomatic method. Accordingly, the necessity of a clear

separation between the mathematical and the epistemological problems of
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axiomatics ensued. The demand for such a separation of the problems had

already been stated with full ‖95b rigor by Klein in his Erlangen Program.2

What was essential, then, about Hilbert’s foundation of geometry was

that here, from the beginning and for the first time, in the laying down of

the axiom system, the separation of the mathematical and logical realm from

the spatial-intuitive realm, and thereby from the epistemological foundation

of geometry, was completely carried out and expressed with complete rigor

<mit voller Schärfe>.

To be sure, in the introduction to his book Hilbert does express the

thought that laying down the axioms for geometry and the investigation

of their relationships is a task that amounts “to the logical analysis of our

spatial intuition,” and likewise he remarks in the first section that each single

of these groups of axioms expresses “certain basic facts of our intuition which

belong together.” But these statements are located completely outside the

axiomatic development <Aufbau>, which is carried out without any reference

to spatial intuition.

A rigorous axiomatic grounding <Begründung> of geometry has of course

always to satisfy the demands that the proofs should exclusively appeal to

what is formulated in the axioms, but that they must not draw, in any

way, on spatial intuition. More recently, it was especially Pasch who, in his

foundation of geometry,3 has emphazised satisfying this demand <auf die

Durchfürhung dieser Idee Gewicht gelegt hat> and has done so in a consistent way

<und ihr auch vollständig entsprochen hat>.

2Klein [1872].
3Pasch [1882].
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However, Hilbertian axiomatics goes even one step further in the elimina-

tion of spatial intuition. Drawing on <Heranziehung> spatial representation

is completely avoided here, not only in the proofs but also in the axioms

and the concept-formations. The words “point,” “line,” “plane” serve only

as names for three different sorts of objects, about which nothing else is

directly assumed except that the objects of each sort constitute a fixed de-

terminate system. Any further characterization is, then, carried out through

the axioms. In the same way, expressions like “the point A lies on the line a”

or “the point A lies between B and C” are not associated with the usual in-

tuitive meanings; rather these expressions will designate only certain, at first

indeterminate, relations, which are implicitly characterized4 only through the

axioms in which these expressions occur.

According to this conception, the axioms are in no way judgments that

can be said to be true or false; after all <überhaupt>, they have a sense only

in the ‖96a context of the whole axiom system. And even the axiom system

as a whole does not state a truth; rather, the logical structure of axiomatic

geometry in Hilbert’s sense—completely analogous to that of abstract group

theory—is a purely hypothetical one. If there are anywhere in reality three

systems of objects, as well as determinate relations between these objects,

such that the axioms of geometry hold of them (this means that by an ap-

propriate assignment of names to the objects and relations, the axioms turn

into true assertions), then all theorems of geometry hold of these objects and

relations as well. Thus the axiom system itself does not express something

factual; rather, it presents only a possible form of a system of connections

4One speaks in this sense of “implicit definition.”
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that must be investigated mathematically according to its internal proper-

ties.

Accordingly, the axiomatic treatment of geometry amounts to separating

the purely mathematical part of knowledge from geometry—originally con-

sidered as a science of spatial figures—and investigating it in isolation on

its own. The spatial relationships are, as it were, mapped into the sphere

of the mathematical-abstract in which the structure of their interconnec-

tions appears as an object of pure mathematical thought. This structure is

subjected to a mode of investigation that concentrates only on the logical

relations and is indifferent to the question of the factual truth, that is, the

question whether the geometrical connections determined by the axioms are

found in reality (or even in our spatial intuition).

This sort of interpretation of the axiomatic method was presented in

Hilbert’s Foundations of Geometry; it offered the particular advantage of

not being restricted to geometry but indeed of being transferable to other

disciplines without further ado. From the beginning, Hilbert envisaged the

point of view of the uniformity of the axiomatic method in its application to

the most diverse domains, and guided by this viewpoint, he tried to bring

this method to bear as widely as possible. In particular, he succeeded in

grounding axiomatically the kinetic theory of gases as well as the elementary

theory of radiation in a rigorous way.

In addition, many mathematicians subscribed to Hilbert’s axiomatic mode

of investigation and worked in the spirit of his endeavors. In particular, it

was a success of axiomatics when Zermelo, in the field of set theory, overcame

the existing uncertainty of inference by a suitable axiomatic delimitation of
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the ‖96b inferential modes and, at the same time, created with his system a

common foundation for number theory, analysis, and set theory.5

In his Zurich lecture on “Axiomatic Thought” (1917),6 Hilbert gave a

summary of the leading methodical thoughts <methodischen Leitgedanken>

and an overview of the results of axiomatic research. Here he character-

izes the axiomatic method as a general procedure of scientific thinking. In

all areas of knowledge where one has already come to the point of setting

up a theory, or, as Hilbert says, to an arrangement of the facts by means

of a framework of concepts [Fachwerk von Begriffen], this procedure sets in.

Then, it always becomes obvious that a few propositions suffice for the log-

ical construction of the theory, and through this the axiomatic foundation

of the theory is made possible. This will at first take place in the sense of

the old axiomatics. However, one can always—as within geometry—move on

to Hilbert’s axiomatic standpoint by disregarding the epistemic character of

the axioms and by considering the whole framework of concepts [Fachwerk

von Begriffen] only (as a possible form of a system of interconnected relations

<Verknüpfungszusammenhang>) in regard to its internal structure.

Thus, the theory turns into the object of a purely mathematical investi-

gation, just what is called axiomatic investigation. Namely, the same main

questions must always be considered for any theory: First of all, in order

to represent a possible system of interconnected relations <Verknüpfungszu-

sammenhang>, the axiom system must satisfy the condition of consistency ;

i.e., the relations expressed in the axioms must be logically compatible with

5Zermelo [1907].
6Hilbert [1918].
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one another. Consequently, the task of proving the consistency of the axiom

system arises. The old conception of axiomatics does not know this problem,

since here indeed every axiom counts as stating a truth. Then it is a ques-

tion of gaining an overview of the logical dependencies among the different

theorems of the theory. A particular focus of investigation must be whether

the axioms are logically independent of each other or whether, say, one or

more axioms can be proved from the remaining ones and are thus superfluous

in their role as axioms. In addition, there remains the task of investigating

the possibilities of a “deepening of the foundations” of the theory, i.e., ex-

amining whether the given axioms of the theory might not be reduced to

propositions of a more fundamental character that would then constitute “a

deeper layer of axioms” for the framework of concepts [Fachwerk von Begriffen]

under consideration.

‖97a This sort of investigation, which is of a mathematical character

throughout, can now be applied to any domain of knowledge that is at all

suitable for theoretical treatment, and its execution is of the highest value

for the clarity of knowledge and for a systematic overview. Thus, through

the idea of axiomatics, mathematical thought gains a universal significance

for scientific cognition [Erkennen]. Hilbert can indeed claim: “Everything

whatsoever, that can be the object of scientific thought is subject, as soon as

it is ripe for the formation of a theory, to the axiomatic method and thereby

of mathematics.”

Now, by means of this comprehensive development [Ausgestaltung] of the

axiomatic idea, a sufficiently wide framework for the mathematical formu-
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lation of problems was indeed obtained, and the epistemological fruitfulness

of mathematics was made clear. But with regard to the certainty of the

mathematical procedure, a fundamental question still remained open.

Namely, the task of proving the consistency of the axiom system was

indeed recognized as first and foremost in the axiomatic investigation of a

theory. In fact, the consistency of the axioms is the vital question for any

axiomatic theory; for whether the framework of concepts represents a system

of interconnected relations at all or only the appearance of such a system

depends on this question.

If we now examine how things stand with the proof of consistency for

the several geometrical and physical theories that have been axiomatically

grounded, then we find that this proof is produced everything only in a

relative sense: The consistency of the axiom system to be investigated is

proved by exhibiting a system of objects and of relations within mathe-

matical analysis that satisfies the axioms. This “method of reduction” to

analysis (i.e., to arithmetic in the wider sense) presupposes that analysis

itself—independently of whether it is considered as a body of knowledge [In-

begriff von Erkenntnissen] or only as an axiomatic structure <Gebäude> (i.e., as

a merely possible system of relations)—constitutes a consistent system.

However, the consistency of analysis is not as immediately evident as one

would like to think at first. The modes of inference applied in the theory of

real numbers and real functions do not have that character of direct evidence
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[Charakter des unmittelbar Handgreiflichen] which is characteristic, for instance,

of the inferences of elementary number theory. And if one wants to free the

methods of proof from everything that is somehow problematic, then one is

compelled to axiomatically set up analysis. Thus it turns out to be necessary

to provide also a consistency proof for ‖97b analysis.

From the beginning, Hilbert recognized and emphasized the need for such

a proof to guarantee the certainty of the axiomatic method and of mathe-

matics in general. And although his efforts concerning this problem have not

yet reached the ultimate goal, he has nonetheless succeeded in finding the

methodological approach by which the task can be mathematically under-

taken.

Hilbert presented the main ideas of this approach already in 1904 in his

Heidelberg lecture “On the Foundations of Logic and Arithmetic.”7 How-

ever, this exposition was difficult to understand and was subject to some

objections. Since then, Hilbert has pursued his plan further and has given a

comprehensible form to his ideas, which he recently presented in a series of

lectures in Hamburg.

The line of thought on which Hilbert’s approach to the foundations of

arithmetic and analysis is based is the following: The methodical difficulties

of analysis, on the basis of which in this science one is compelled to go beyond

the framework of what is concretely representable, result from the fact that

7Appendix VII to the Grundlagen der Geometrie.
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here continuity and infinity play an essential role. This circumstance would

also constitute an insuperable obstacle to the consistency proof for analy-

sis, if this proof had to be carried out by showing that a system of things

as assumed by analysis, say the system of all finite or infinite sets of whole

numbers, is logically possible.

However, the claim of consistency needs not at all be proved in this way.

Rather, one can give the following entirely different twist to the claim: The

modes of inference of analysis can never lead to a contradiction or, what

amounts to the same thing: It is impossible to derive the relation 1 6= 1

(“1 is not equal to 1”) from the axioms of analysis and by means of its

methods of inference. Here it is not a question concerning the possibility

of a continuous, infinite manifold of certain properties, but concerning the

impossibility of a mathematical proof with determinate properties. A math-

ematical proof is, however, unlike a continuous infinite manifold, a concrete

object surveyable in all its parts. A mathematical proof must, at least in

principle, be completely communicable from beginning to end. Moreover,

the required property of the proof (i.e., that it proceeds according to the

principles of analysis and leads to the final result 1 6= 1) is also a concretely

‖98a determinable property. This is why there is also, in principle, the possi-

bility of furnishing a proof of consistency for analysis by means of elementary,

and evidently certain, considerations. We only have to take the standpoint

that the object of investigation is not constituted by the objects to which

the proofs of analysis refer, but rather these proofs themselves.
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On the basis of this consideration, the task arises then for Hilbert to ex-

amine more precisely the forms of mathematical proofs. We must, so he says

in his lecture on axiomatic thought, “make the concept of specific mathemat-

ical proof itself the object of an investigation, just as the astronomer takes

into account the motion of his location, the physicist concerns himself with

the theory of his apparatus, and the philosopher criticizes reason itself.” The

general forms of logical inference are decisive for the structure of mathemat-

ical proofs. That is why the required investigation of mathematical proofs

must, in any case, also concern the logical forms of inference. Accordingly,

already in the Heidelberg lecture, Hilbert explained that “a partially simul-

taneous development of the laws of logic and arithmetic [is] necessary.”

With this thought Hilbert turned to/built upon <aufnehmen> mathemat-

ical logic. This science, whose idea goes back to Leibniz, emerged from prim-

itive beginnings and developed into a fruitful field of mathematical thought

in the second half of the nineteenth century. It has build/formed the meth-

ods how to arrive at a mathematical mastery of the forms of logical inference

through a symbolic notation for the simplest logical relations (as “and,” “or”,

“not,” and “all”). It turned out that by this “logical calculus” only one gains

the complete overview of the system of logical forms of inference. The in-

ferential figures, which are dealt with in traditional logic, constitute only a

relatively small subfield of this system. Peano, Frege, and Russell in par-

ticular, succeeded in developing the logical calculus in such a way that the

mental inferences [gedankliche Schlüsse] of mathematical proofs can be per-

fectly imitated by means of symbolic operations.
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This procedure of the logical calculus forms a natural supplement to the

method of the axiomatic grounding of a science to the following extent: It

makes possible, along with the exact determination of the presuppositions—

as it is brought about by the axiomatic method—also an exact pursuit of the

modes of inference by which one proceeds from the principles of a science to

its conclusions.

In adopting the procedure of mathematical logic, Hilbert reinterpreted

‖98b it as he had done with the axiomatic method. Just as he had formerly

stripped the basic relations and axioms of geometry of their intuitive content,

he now eliminates the intellectual content of the inferences from the proofs of

arithmetic and analysis which he takes as the object of his investigation. He

achieves this by taking the systems of formulas, by which those proofs are

represented in the logical calculus—detached from their contentual-logical

interpretations—, as the immediate object of consideration, and thereby re-

placing the proofs of analysis with a purely formal manipulation of definite

signs according to fixed rules.

Through this mode of consideration, in which the separation of the specif-

ically mathematical from everything contentual reaches its peek, Hilbert’s

view on the nature of mathematics and on the axiomatic method finally

finds its actual completion. For we recognize at this point that that sphere

of the mathematical-abstract, into which the method of thought of mathe-

matics translate all that is theoretically comprehensible, is not the sphere
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of the contentual-logical [inhaltlich Logisches] but rather the domain of pure

formalism. Mathematics turns out to be the general doctrine of formalisms,

and by understanding it as such its universal significance also becomes clear

without further ado.

This meaning of mathematics as a general doctrine of forms has come to

light in recent physics in a most splendid way, especially in Einstein’s theory

of gravitation, in which the mathematical formalism gave Einstein the lead-

ing idea for setting up his law of gravitation, whose more exact form could

never have been found without enlisting mathematical tools <Hilfsmittel>.

And here it was once again Hilbert who first brought this law of gravitation

to its simplest mathematical form. And by showing the possibility of a har-

monious combination of the theory of gravitation with electrodynamics, he

initiated the further mathematical speculations connected to Einstein’s the-

ory which were brought to systematic completion by Weyl with the help of

his geometrical ideas. If these speculations should stand the test in physics,

then the triumph of mathematics in modern science would thereby be a per-

fect one.

If we now look at the ideas yielded by Hilbert’s philosophical investiga-

tions as a whole, as well as the effect caused by these investigations, and if

we, on the other hand, bear in mind the unfolding of mathematics in the

recent times as outlined above, then, as we will see, what is essential of

Hilbert’s philosophical accomplishment shows in the following. By devel-

oping a broad-minded ‖99b philosophical conception of mathematics, which
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made it possible to do justice to the significance and scope of its method,

Hilbert has established, with force and success, the claim to a ‖99a uni-

versal intellectual influence in science that mathematics has gained by its

inner deepening and its reshapening on a large scale. For this the friends of

mathematics will be always indebted to him.
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