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‖369/A1 Lecture given at the 56th meeting of German philologists and

teachers in Göttingen.

The topic of the lecture and its title have been chosen in the spirit of

Hilbert. What is here called theoretical logic is usually referred to as symbolic

logic, mathematical logic, algebra of logic, or logical calculus. The purpose

of the following remarks is to present this research area in a way that justifies

calling it theoretical logic.

Mathematical logic is in general not very popular. It is most often re-

garded as idle play that neither supports effectively practical inference nor

contributes significantly to our logical insights.
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To begin with, the charge of playfulness is only justified with regard to

the initial treatment of mathematical logic. The main emphasis was initially

put on the formal analogy to algebra, and the pursuit of the latter was often

considered as an end in itself. But this was the state of affairs decades ago,

and today the problems of mathematical logic are inseparably intertwined

with the questions concerning the foundations of the exact sciences, so that

one can no longer speak of a merely playful character.

Secondly, concerning the application to practical inference, it has to be

mentioned first that a symbolic calculus promises advantages only to someone

who has sufficient practice in using it. But, in addition, one has to consider

that—in contrast to most kinds of symbolisms which serve, after all, the pur-

pose of abbreviating and contracting operations—it is the primary task of the

logical calculus to decompose the inferences into their ultimate constituents

and to make outwardly evident each individual step and bring it thereby

into focus. The main interest connected with the application of the logical

calculus is consequently not one of technique, but of theory and principle.

‖A2 This leads me to the third charge; namely that mathematical logic does

not significantly further our logical insights. This opinion is connected with

the view on logic expressed by Kant in the second preface to the Critique

of Pure Reason, where he says: “It is remarkable also that to the present

day this logic has not been able to advance a single step, and is thus to all

appearance a closed and completed body of doctrine.”1

It is my intention to show that this standpoint is erroneous. To be sure,

Aristotle’s formulation of the ultimate principles of inference and their im-

1Kant, CPR B viii=Kemp Smith, p. 17.
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mediate consequences constitutes one of the most significant intellectual ac-

complishments; it is also one of the very few [accomplishments] which belong

to the permanently secured part of the realm of philosophical knowledge.

This fact will continue to receive its full due. But this does not prevent us

from ascertaining that traditional logic, in posing its problems, is essentially

open-ended, and in arranging its facts it is insufficiently adapted to the needs

of either a systematic overview and of methodical and epistemologico-critical

insights. Only the newer logic, as it has developed under the name of algebra

of logic or mathematical logic, introduced such concept formations and such

an approach to formal logic as makes it possible to satisfy these needs of

systematics and of philosophy.

The realm of logical laws, the world of abstract relations, has only thereby

been revealed to us in its formal structure, and the relationship of mathe-

matics and logic has been illuminated in a new way. I will try briefly to give

an idea of this transformation and of the results it has brought to light.

In doing so I will not be concerned with presenting the historical devel-

opment or the various forms in which mathematical logic has been pursued.

Instead, I want to choose a presentation of the new logic that best facilitates

relating and comparing it to traditional logic. As for logical symbols, I shall

use the symbolism Hilbert employs now in his lectures and publications.

Traditional logic subdivides its problems into the investigation of concept

formation, of judgment, and of inference. It is not advantageous to begin with

concept formation, because its essential ‖3 forms are not elementary but are

already based on judgments. Let us begin, therefore, with judgment.

Here, the newer logic immediately introduces an essentially new vantage
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point, replacing classifications by the search for elementary logical operations.

One does not speak of the categorical or the hypothetical or the negative

judgment, but of the categorical or hypothetical connexion, of negation as

a logical operation. In the same way, one does not classify judgments into

universal and particular ones but introduces logical operators for universality

and particularity.

This approach is more appropriate than that of classification for the fol-

lowing reason. In judgments different logical processes generally occur in

combination, so that a unique corresponding classification is not possible at

all.

First let us consider the categorical relationship, i.e. that of subject and

predicate. We have here an object and a proposition about it. The symbolic

representation for this is

P (x),

to be read as:

“x has the property P.”

The relation of the predicate to an object is here explicitly brought out by

the variable. This is merely a clearer kind of notation; however, the remark

that several objects can be subjects of a proposition is crucial. In that case

one speaks of a relation between several objects. The notation for this is

R(x, y), or R(x, y, z), etc.

Cases and prepositions are used in ordinary language to indicate the

different members of relations.
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By taking into account relations, logic is extended in an essential way

when compared with its traditional form. I shall speak about the significance

of this extension when discussing the theory of inference.

The forms of universality and particularity are based on the categorical

relationship. Universality is represented symbolically by

(x)P (x)

“all x have the property P .”

The variable x appears here as a “bound variable;” the proposition does

not depend on x—in the same way as the value of an integral does not depend

on the variable of integration.

We sharpen the particular judgment first ‖4 by replacing the somewhat

indefinite proposition, “some x have the property P ,” with the existential

judgment:

“there is an x with the property P ,”

written symbolically:

(Ex)P (x).

By adding negation, the four types of judgment are obtained which are

denoted in Aristotelian logic by the letters “a, e, i, o”.

If we represent negation by putting a bar over the expression to be

negated, then we obtain the following representations for the four types of

judgment:
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a: (x) P (x)

e: (x) P (x)

i: (Ex) P (x)

o: (Ex) P (x).

Already here, in the doctrine of “oppositions,” it proves useful for the

comprehension of matters to separate the operations; thus we recognize, for

example, that the difference between contradictory and contrary opposition

lies in the fact that in the former case the whole proposition, e.g., (x)P (x),

is negated, whereas in the latter case only the predicate P (x) is negated.

Let us now turn to the hypothetical relationship.

A→ B “if A, then B.”

This includes a connexion of two propositions (predications). So the

members of this connexion already have the form of propositions, and the

hypothetical relationship applies to these propositions as undivided units.

The latter already holds also for the negation A.

There are still other such propositional connexions, in particular:

the fact that A exists together with B: A & B,

and further, the disjunctive connexion; there we have to distinguish between

the exclusive “or,” in the sense of the Latin “aut-aut”, and the “or” in the

sense of “vel”. In accordance with Russell’s notation this latter connexion is

represented by A ∨B.

In ordinary language, such connexions are expressed with the help of

conjunctions.

A consideration, analogous to that used in the doctrine of opposition,
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suggests itself here, namely to combine the binary propositional connexions

with negation in one of two ways, either by negating the individual members

of the connexion or ‖5 by negating the latter as a whole. And now, let us

see what dependency relations result.

To indicate that two connexions have materially the same meaning (or

are “equivalent”), I will write “eq” between them (though, “eq” is not a sign

of our logical symbolism).

In particular the following connexions and equivalences result:

A & B: “neither A nor B”

A & B: “A and B exclude each other”

A & B eq A ∨B

eq A→ B

eq B → A

A→ B eq A ∨B

B eq B

(double negation is equivalent to affirmation).

From this it furthermore follows:

A→ B eq A & B

eq A ∨B

A ∨B eq A→ B

eq A & B.

On the basis of these equivalences it is possible to express some of the

logical connexions

,→,&,∨
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by means of others. In fact, according to the above equivalences one can

express

→ by ∨ and

∨ by & and

& by → and

so that each of

& and

or ∨ and

or → and

alone suffice as basic connexions. One can get along even with a single basic

connexion, but, to be sure, not with one of those for which we already have a

sign. If we introduce for the connexion of mutual exclusion A & B the sign

A|B

then the following equivalences obtain:

A|A eq A

A|B eq A & B

eq A→ B.

‖6 This shows that with the aid of this connexion one can represent negation

as well as → and, consequently, the remaining connexions. Just like the

relation of mutual exclusion also the connexion

“neither — nor” A & B
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can be taken as the only basic connexion. If for this connexion we write

A ‖ B,

then we have

A ‖ A eq A

A ‖ B eq A & B;

thus, negation as well as & is expressible by means of this connexion.

These reflections already border somewhat on the playful. Nevertheless,

it is remarkable that the discovery of such a simple fact as that of reducing

all propositional connexions to a single one was reserved for the 20th century.

The equivalences between propositional connexions were not at all systemat-

ically investigated in the old logic.2 There one finds only occasional remarks

like, for example, that of the equivalence of

A→ B and B → A

on which the inference by “contraposition” is based. The systematic search

for equivalences is, however, all the more rewarding as one reaches here a

2Today these historical remarks stand in need of correction. In the first place, the

reducibility of all propositional connexions to a single one was already discovered in the

19th century by Charles S. Peirce—to be sure, a fact which became more generally known

only with the publication of his collected works in 1933. Further, it is not correct that the

equivalences between propositional connectives were not considered systematically in the

old logic—to be sure, not in Aristotelian logic, but in other Greek schools of philosophy.

(On this topic see Bochenski’s book Formal Logic [Editorial footnote: REFERENCE?].)

Remark: This footnote, as well as the next three, are subsequent additions occasioned

by the republication of this lecture.
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self-contained and entirely surveyable part of logic, the so-called propositional

calculus. I will explain in some detail the value of this calculus for reasoning.

Let us reflect on what the sense of equivalence is. When I say

A & B eq A ∨B,

I do not claim that the two complex propositions have the same sense but only

that they have the same truth value. That is, no matter how the individual

propositions A,B are chosen, A ∨ B and A & B are always simultaneously

true or false, and consequently these two expressions can represent each other

with respect to truth.

Indeed, any complex proposition A and B can be viewed as a mathemat-

ical function assigning to each pair of propositions A,B one of the values

“true” or “false.” The actual content of the propositions A,B does not mat-

ter at all. Rather, what matters is only whether A is true or false and whether

B is true or false. So we are dealing with truth functions : To a pair of truth

values another truth value is assigned.

Each such function can be given by a schema in such a way, that the four

possible connections of two truth values (corresponding to the propositions

A,B) are represented by four cells, and in each of these the corresponding

truth value of the function (“true” or “false”) is written down.

The schemata for A & B,A ∨B,A→ B are specified here.

A & B :

A

B
︷ ︸︸ ︷
true false︷ ︸︸ ︷

true true false

false false false
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A ∨B :

A

B
︷ ︸︸ ︷
true false︷ ︸︸ ︷

true true true

false true false

A→ B :

A

B
︷ ︸︸ ︷
true false︷ ︸︸ ︷

true true true

false false true

‖8 One can easily calculate that there are exactly 16 different such func-

tions. The number of different functions of n truth values

A1, A2, . . . , An

is, correspondingly, 2(2n).

To each function of two or more truth values corresponds a class of substi-

tutable3 propositions of connexions. Among these one class is distinguished,

namely the class formed by those connexions that are always true.

These connexions represent all logical sentences that hold generally and

in which individual propositions occur only as undivided units.4 We will call

the expressions representing sentences that hold generally valid formulas.

We master propositional logic, if we know the valid formulas (among the

propositions of connexions), or if we can decide for a given propositional

3Editorial footnote: “Um uns kurz ausdrücken zu können wollen wir zwei Aussagen-

verknüpfungen durch einander ‘ersetzbar’ nennen, wenn sie dieselbe Wahrheitsfunktion

darstellen.” HB I, pp. 47–48.
4Editorial footnote: concerning allgemein gültig versus allgemeingültig
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connexion whether or not it is valid. After all, the task for reasoning in

propositional logic is formulated as follows:

Certain connexions

V1, V2, . . . , Vk,

are given; they are built up from elementary propositions A,B, . . ., and rep-

resent true sentences for a certain interpretation of the elementary proposi-

tions. The question is whether another given connexion D of these elemen-

tary propositions follows logically whenever V1, V2, . . . , Vk are valid, indeed

without considering the more precise content of the propositions A,B, . . ..

The answer to this question is “yes,” if and only if

(V1 & V2 & . . . & Vk)→ D,

composed from A,B, . . ., represents a valid formula.

The decision concerning the validity of a propositional connexion can in

principle always be reached by trying out all relevant truth values. The

method of considering equivalences, however, provides a more convenient

procedure. That is to say, by means of equivalent transformations each for-

mula can be put into a certain normal form in which only the logical symbols

&,∨, occur, and from this normal form one can read off directly whether

or not the formula is valid.

The rules of transformation are also very simple. One can in particular

calculate with & and ∨ in complete analogy to + and · in algebra. Indeed,

matters are here even simpler, as & and ∨ can be treated in a completely

symmetrical way.

‖9 By considering the equivalences, we entered, as already mentioned, the

domain of inferences. But here we carried out the inferences, as it were, in
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a naive way, on the basis of the meaning of the logical connexions, and we

turned the task of making inferences into a decision problem.

But for logic there remains the task of systematically presenting the rules

of inference.

Aristotelian logic lays down the following principles of inference:

1. Rule of categorical inference: the “dictum de omni et nullo”: what

holds universally, holds in each particular instance.

2. Rule of hypothetical inference: if the antecedent is given, then the

consequent is given, i.e. if A and if A→ B, then B.

3. Laws of negation: law of contradiction and law of excluded middle: A

and A can not both hold, and, at least one of the two propositions must

hold.

4. Rule of disjunctive inference: if at least one of A or B holds and if

A→ C as well as B → C, then C holds.

One can say that each of these laws represents the implicit definition for

a logical process: 1. for universality, 2. for the hypothetical connexion, 3.

for negation, 4. for disjunction (∨).

These laws contain indeed the essence of what is expressed when infer-

ences are being made. But for a complete analysis of inferences this does not

suffice. For this we demand that nothing needs to be reflected upon, once

the principles of inference have been spelled out. The rules of inference must

be constituted in such a way that they eliminate logical thinking. Otherwise

we would have to have again logical rules which specify how to apply those

rules.
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This demand to exorcise the mind can indeed be met. The development of

the doctrine of inferences obtained in this way is analogous to the axiomatic

development of a theory. Certain logical laws written down as formulas cor-

respond here to the axioms, and operating [on formulas] externally according

to fixed rules, that lead from the initial formulas to further ones, corresponds

to contentual reasoning that usually leads from axioms to theorems.

Each formula, that can be derived in such a way, represents a valid logical

proposition.

Here it is once again advisable to separate out propositional logic, which

rests on the ‖10 principles 2., 3., and 4. We need only the following rules;

we represent the elementary propositions by variables

X, Y, . . .

The first rule now states: any propositional connexion can be substituted for

such variables (substitution rule).

The second rule is the inference schema

S

S→ T

T

according to which the formula T is obtained from two formulas S,S→ T.

The choice of the initial formulas can be made in quite different ways.

One has taken great pains, in particular, to get by with the smallest possible

number of axioms, and in this respect the limit of what is possible has indeed

been reached. The purpose of logical investigations is better served, however,

when we separate, as in the axiomatics for geometry, various groups of axioms
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from one another, such that each group gives expression to the role of one

logical operation. The following list then emerges:

I Axioms of implication

II a) Axioms for &

II b) Axioms for ∨

III Axioms of negation.

This system of axioms5 generates through application of the rules all valid

formulas of propositional logic.6 This completeness of the axiom system can

be characterized even more sharply by the following facts: if we add any

underivable formula to the axioms, then we can deduce with the help of the

rules arbitrary propositional formulas.

The division of the axioms into groups has a particular advantage, as it

allows one to separate out positive logic. We understand this to be the system

of those propositional connexions that are valid without assuming that an

opposite exists.7 For example:

(A & B)→ A

(A & (A→ B))→ B.

5Editorial footnote: fixing the axioms as in HB I, p. 65; already formulated in the early

twenties As to completeness, cf. the Habilitationsschrift of Bernays written in 1918.
6We refer here only to those formulas that can be built up with the operations →,&,∨

and with negation. If further operation symbols are added, then they can be introduced

by replacement rules. To be sure, one is not bound to distinguish the four mentioned

operations in this particular way.
7Editorial footnote: “Die “positive Logik” . . . d.h. die Formalisierung derjenigen logis-

chen Schlüsse, welche unabhängig sind von der Voraussetzung, daß zu jeder Aussage ein

Gegenteil existiert.” HB I, p. 67.
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‖11 The system of these formulas presents itself in our axiomatics as the

totality of those formulas that are derivable without using axiom group III.

This system is far less perspicuous than the full system of valid formulas.

Also, no decision procedure is known by which one can determine, in accor-

dance with a definite rule, whether a formula belongs to this system.8 It is

not the case that, for instance, every formula expressible in terms of→,&,∨,

which is valid and therefore derivable on the basis of I–III, is already derivable

from I–II. One can rigorously prove that this is not the case.

An example is provided by the formula

A ∨ (A→ B).

Representing → by ∨ and this formula turns into

A ∨ (A ∨B),

and this representation allows one immediately to recognize the formula as

valid. However, it can be shown that the formula is not derivable within

positive logic, i.e., on the basis of axioms I–II. Hence, it does not represent

a law of positive logic.

We recognize here quite clearly that negation plays the role of an ideal ele-

ment whose introduction aims at rounding off the logical system to a totality

with a simpler structure, just as the system of real numbers is extended to

a more perspicuous totality by the introduction of imaginary numbers, and

just as the ordinary plane is completed to a manifold with a simpler projec-

tive structure by the addition of points at infinity. Thus this method of ideal

8Since then decision procedures for positive logic have been given by Gerhard Gentzen

and Mordechaj Wajsberg.
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elements, fundamental to science, is already encountered here in logic, even

if we are usually not aware of its significance.

A special part of positive logic is constituted by the doctrine of chain

inferences that was discussed already in Aristotelian logic. In this area there

are also natural problems and simple results, not known to traditional logic

and again requiring that specifically mathematical considerations be brought

to bear. I have in mind Paul Hertz’s investigations of sentence-systems. —9

The axiomatics we have considered up to now refers to those inferences

which depend solely on the rules of the hypothetical and disjunctive inference,

‖12 and of negation. Now we still have the task of incorporating categorical

reasoning into our axiomatics. How this is done I will only describe briefly

here.

Of the dictum de omni et nullo we need also the converse: “what holds

in each particular instance, also holds generally.” Furthermore, we have to

take into account the particular judgment. It holds analogously:

“If a proposition A(x) is true of some object x, then there is an object of

which it is true, and vice versa.”

Thus we obtain four principles of reasoning that are represented in the

axiomatics by two new initial formulas and two rules. A substitution rule for

the individual variables x, y, . . . is also added.

Moreover, the substitution rule concerning propositional variablesX, Y, . . .

has to be extended in such a way now that the formulas of propositional logic

can be applied also to expressions containing individual variables.

Let us now see, how the typical Aristotelian inferences are worked out

9Editorial footnote: ref. to HB I, p. 84, but also Keynes, p. 300.
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from this standpoint. For that it is necessary to say first something about

the interpretation of the universal judgment “all S are P”.

According to the Aristotelian view, such a judgment presupposes that

there are certain objects with property S, and it is then claimed that all

these objects have property P . This interpretation of the universal judg-

ment, to which Franz Brentano in particular objected from the side of phi-

losophy, is admittedly quite correct. But it is suited neither for the purposes

of theoretical science nor for the formalization of logic, since the implicit

presupposition brings with it unnecessary complications. Therefore we shall

restrict the content of the judgment, “all S are P ,” to the assertion, “an

object having property S has also property P .”

Accordingly, such a judgment is simultaneously universal and hypotheti-

cal. It is represented in the form

(x)(S(x)→ P (x)).

The so-called categorical inferences contain consequently a combination of

categorical and hypothetical inferences. I want to illustrate this by a classical

example:

“All men are mortal, Cajus is a man, therefore Cajus is mortal.”

If we represent “x is ‖13 human” and “x is mortal” in our notation by

H(x) and M(x) respectively, then the premises are

(x)(H(x)→M(x)),

H(Cajus),

and the conclusion is: M(Cajus).
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The derivation proceeds, first, according to the inference from the general

to the particular, by deducing from

(x)(H(x)→M(x))

the formula

H(Cajus)→M(Cajus).

And this proposition together with

H(Cajus)

yields according to the schema of the hypothetical inference:

M(Cajus).

It is characteristic for this representation of the inference that one refrains

from giving a quantitative interpretation of the categorical judgment (in the

sense of subsumption). Here one recognizes particularly clearly that mathe-

matical logic does not depend in the least upon being a logic of extensions.

Our rules and initial formulas permit us now to derive all the familiar

Aristotelian inferences as long as they agree with our interpretation of the

universal judgment—that leaves just 15. In doing so one realizes that there

are actually only very few genuinely different kinds of inferences. Further-

more, one gets the impression that the underlying problem is delimited in a

quite arbitrary way.

A more general problem, which is also solved in mathematical logic, con-

sists in finding a decision procedure that allows one to determine whether

a predicate formula is valid or not. In this way, one masters reasoning in
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the domain of predicates, just as one masters propositional logic with the

decision procedure mentioned earlier.

But our rules of inference extend much farther. The actual wealth of log-

ical connections is revealed only when we consider relations (predicates with

several subjects). Only then does it become possible to capture mathematical

proofs in a fully logical way.

However, here one is induced to add various extensions which are sug-

gested to us also by ordinary language.

The first extension consists in introducing a formal ‖14 expression for “x

is the same object as y,” or “an object different from y.” For this purpose the

“identity of x and y” has to be formally represented as a particular relation,

the properties of which are to be formulated as axioms.

Second, we need a symbolic representation of the logical relation we ex-

press linguistically with the aid of the genitive or the relative pronoun in

such phrases as “the son of Mr. X” or “the object that.” This relation forms

the basis of the concept of a function in mathematics. It matters here that

an object, having uniquely a certain property or satisfying a certain relation

to particular objects, is characterized by this property or relation.

The most significant extension, however, is brought about by the cir-

cumstance that we are led to consider predicates and relations themselves

as objects, just as we do in ordinary language when we say, for example,

“patience is a virtue.” We can state properties of predicates and relations,

and furthermore, [second order] relations between predicates and also be-

tween relations. Likewise, the forms of universality and particularity can be

applied with respect to predicates and relations. In this way we arrive at a
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logic of “second order ;” for its formal implementation the laws of categorical

reasoning have to be extended appropriately to the domain of predicates and

relations.

The solution of the decision problem—which, incidentally, is here auto-

matically subsumed under a more general problem—presents an enormous

task for this enlarged range of logical relation resulting from the inclusion of

relations and the other extensions mentioned. Its solution would mean that

we have a method that permits us, at least in principle, to decide for any

given mathematical proposition whether or not it is provable from a given

list of axioms. As a matter of fact, we are far from having a solution of this

problem. Nevertheless, several important results of a very general charac-

ter have been obtained in this area through the investigations of Löwenheim

and Behmann; in particular one succeeded in completely solving the decision

problem for predicate logic also in the case of second order logic.10

‖15 Here we see that the traditional doctrine of inferences comprises only

a minute part of what really belongs to the domain of logical inference.

As yet I have not even mentioned concept formation. And, for lack of time,

I cannot consider it in detail. I will just say this much: a truly penetrating

logical analysis of concept formation becomes possible only on the basis of

the theory of relations. Only by means of this theory one realizes what

kind of complicated combinations of logical expressions (relations, existential

propositions, etc.) are concealed by short expressions of ordinary language.

10Notice that one speaks here of “predicate logic” in the sense of the distinction between

predicates and relations. Thus, what is meant here by “predicate logic” is what currently

is mostly called the logic of monadic predicates. The logic of polyadic predicates is already

generally undecidable for the first order case, as was shown by Alonzo Church.
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Such an analysis of concept formation has been initiated to a large extent,

especially by Bertrand Russell, and it has led to knowledge about general

logical processes of concept formation. The methodical understanding of

science is being furthered considerably through their clarification.

I now come to the end of my remarks. I have tried to show that logic,

that is to say the correct old logic as it was always intended, obtains its gen-

uine rounding off, its proper development and systematic completion, only

through its mathematical treatment. The mathematical mode of considera-

tion is introduced here not artificially, but rather arises in an entirely natural

way, in the further pursuit of [actual] problems.

The resistance to mathematical logic is widespread, particularly among

philosophers; it has—apart from the reasons mentioned at the beginning—

also a principled one. Many approve of having mathematics absorbed into

logic. But here one realizes the opposite, namely, that the system of logic is

absorbed into mathematics.

With respect to the mathematical formalism logic appears here as a

specific interpretation and application, perfectly resembling the relation be-

tween, for example, the theory of electricity and mathematical analysis, when

the former is treated according to Maxwell’s theory.

That does not contradict the generality of logic, but rather the view that

this generality is superordinate to that of mathematics. Logic is about certain

contents that find application to any subject matter whatsoever, insofar as

it is thought about. Mathematics, on the other hand, is about the most

general laws of any ‖16 combination whatsoever. This is also a kind of

highest generality, namely, in the direction towards the formal. Just as every
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thought, including the mathematical ones, is subordinate to the laws of logic,

each structure, each manifold however primitive—and thus also the manifold

given by the combination of sentences or parts of sentences—must be subject

to mathematical laws.

If we wanted a logic free of mathematics, no theory at all would be left,

but only pure reflection on the most simple connections of meaning. Such

purely contentual considerations—which can be comprised under the name

“philosophical logic”—are, in fact, indispensable and decisive as a starting

point for the logical theory; just as the purely physical considerations, serv-

ing as the starting point for a physical theory, constitute the fundamental

intellectual achievement for that theory. But such considerations do not con-

stitute fully the theory itself. Its development requires the mathematical

formalism. Exact systematic theory of a subject is, for sure, mathematical

treatment, and it is in this sense that Hilbert’s dictum holds: “Anything at

all that can be the object of scientific thought, as soon as it is ripe for the

formation of a theory. . . will be part of mathematics.”11 Even logic can not

escape this fate.

11Editorial footnote on Hilbert source.
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