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§ 1. The Problem of consistency in axiomatics as a logical deci-

sion problem.

The state of research in the field of foundations of mathematics, to which

our presentation is related, is characterized by three kinds of investigations:

1. the development of the axiomatic method, especially with the help of

the foundations of geometry,

2. the founding of analysis by today’s rigorous methods through the re-

duction of the theory of magnitudes to the theory of numbers and sets

of numbers,

3. investigations in the foundations of number theory and set theory.

A deeper set of tasks, linked to the standpoint reached through these

investigations, arises on the basis of methods subjected to stricter demands;
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these problems involve a new way of dealing with the problem of the infinite.

We will introduce these problems by considering axiomatics.

The term ‘axiomatic’ is used partly in a wider, and partly a narrower

sense. We call the development of a theory axiomatic in the widest sense of

the word, if the fundamental concepts and presuppositions as such are set out

on top and marked as such, and the further content of the theory is logically

derived from these with the help of definitions and proofs. In this sense the

geometry of Euclid, the mechanics of Newton, and the thermodynamics

of Clausius were axiomatically founded.

The axiomatic point of view was made more rigorous in Hilbert’s “Foun-

dations of Geometry”. The greater rigor consists in the fact that in the ax-

iomatic development of a theory one keeps only that portion of the presen-

tational subject matter, from which the fundamental concepts of the theory

are formed, that is formulated as an extract in the axioms; one abstracts,

however, from all remaining content. Another factor coming along in ax-

iomatics in the narrowest sense is the existential form. It serves to distinguish

the axiomatic method from the constructive or genetic method of founding

a theory.1 Whereas in the constructive method |2the objects of a theory

are introduced merely as a family of things,2 in an axiomatic theory one

is concerned with a fixed system of things (or several such systems) which

constitutes a previously delimited domain of subjects for all predicates from

which the statement of the theory are constituted.

Except in the trivial cases in which a theory has to do just with a finite,

1See for this comparison appendix VI to Hilbert’s Grundlagen der Geometrie: Über

den Zahlbegriff, 1900.
2Brouwer and his school use the word “species” in this sense.
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fixed totality of things, the presupposition of such a totality, of a “domain

of individuals”, involves an idealizing assumption joining the assumptions

formulated in the axioms.

It is a characteristic of this sharpened kind of axiomatics that results

from abstraction from material content and also the existential form—we

will call it “formal axiomatics” for short—that it requires a proof of consis-

tency, whereas contentual axiomatics introduces its fundamental concepts by

reference to known acts of experience and its basic principles either as obvi-

ous facts, which one can make clear to oneself, or as extracts from complexes

of experiences, thereby expressing the belief that one is on the track of laws

of nature and at the same time intending to support this belief through the

success of the theory.

Formal axiomatics as well needs in any case certain evidence in the per-

formance of deductions as well as in the proof of consistency; however, there

is the essential difference that this kind of evidence does not depend on any

special epistemological relation to special field, but rather it is one and the

same for every axiomatization, namely it is that primitive kind of knowledge

that is the precondition of every exact theoretical investigation whatsoever.

We will consider this kind of evidence more closely.

The following aspects are especially important for a correct evaluation of

the significance for epistemology of the relationship between contentual and

formal axiomatics:

Formal axiomatics requires contentual axiomatics as a supplement, be-

cause only in terms of this supplement can one give instruction in the choice

of formalisms and, moreover, in the case of a given formal theory, give an
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instruction of its applicability to some domain of reality.

On the other hand we cannot just stay at the level of contentual ax-

iomatics, since in science we are if not always, so nevertheless predominantly,

concerned with such theories |3 that get their significance from a simplify-

ing idealization of an actual state of affairs rather than from a complete

reproduction of it. A theory of this kind cannot get a foundation through

a reference to either the evident truth of its axioms or to experience; rather

such a foundation can only be given when the idealization performed, i.e.,

the extrapolation through which the concept formations and the principles

of the theory come to overstep the reach either of intuitive evidence or of the

data of experience, is understood to be consistent. Furthermore, reference

to the approximate validity of the principles is of no use for the recognition

of consistency; for an inconsistency could arise just because a relationship

which holds only in a restricted sense is taken to hold exactly.

We are therefore forced to investigate the consistency of theoretical sys-

tems without considering matters of fact and, with this, we are already at

the standpoint of formal axiomatics.

As to the treatment of this problem up until now, both in the case of ge-

ometry and in branches of physics, this is done with the help of the method of

arithmetization: one represents the objects of a theory through numbers and

systems of numbers and basic relations through equations and inequalities

in such a way that on the basis of this translation the axioms of the theory

become either arithmetic identities or provable assertions (as in the case of

geometry) or (as in physics) a system of conditions, the simultaneous satis-

fiability of which can be proved on the basis of certain arithmetic existence
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assertions. In this procedure the validity of arithmetic, i.e., the theory of real

numbers (analysis) is presupposed; so we come to the question of what kind

this validity is.

However, before we concern ourselves with this question we want to see

whether there isn’t a direct way of attacking the problem of consistency. We

want to get the structure of this problem clearly before our minds, anyway. At

the same time we already want to take the advantage to familiarize ourselves

a bit with logical symbolism, which proves to be very useful for the given

purpose and which we will have to consider more deeply in the sequel.

As an example of axiomatics we take the geometry of the plane; and

for the sake of simplicity we will consider only the axioms of the geometry

of position (the axioms that are presented as “axioms of connection” and

“axioms of order” in Hilbert’s “Grundlagen der Geometrie” together with the

parallel axiom. For our purpose it suggests itself to diverge from Hilbert’s

axiom system by not taking points and lines |4 as two basic systems of things

but rather to take only points as individuals. Instead of the relation “points x

and y determine the line g,” we use the relation between three points “x, y, z

lie on one line” for which we use the designation Gr(x, y, z). Betweenness

comes as a second fundamental relation to this relation: “x lies between y

and z”, which we designate with Zw(x, y, z).3 Moreover, identity of x and

y appears in the axioms as a notion belonging to logic, for which we use the

usual equality sign x = y.

3The method of taking only points as individuals is in particular developed in the

axiomatics of Oswald Veblen “A system of axioms for geometry”. Here furthermore all

geometrical relations are defined in terms of the relation “between”.

5



In addition we only need the logical signs for the symbolic presentation

of the axioms, namely first the signs for generality and existence: if P (x) is

a predicate referring to the object x, then (x)P (x) means, “all x have the

property P (x),” and (Ex)P (x) means “there is an x with the property P (x).”

(x) is named the “for-all-sign,” and (Ex) the “there-is-sign.” The for-all-sign

and there-is-sign can refer to any other variable y, z, u in the same way they

can refer to x. The variable belonging to such a sign is “bound” by this sign,

in the same way an integration variable is bound by the integration sign, so

that the whole statement does not depend on the value of the variables.

Signs for negation and the joining of sentences are added as further logical

signs. We designate the negation of a statement by overstriking. In the case

of a preceding for-all-sign or there-is-sign the negation stroke is to be set only

above this sign, and instead of x = y the shorter x 6= y should be written. The

sign & (“and”) between two statements means that both statements hold

(conjunction). The sign ∨ (“or” in the sense of “vel”) between two statements

means that at least one of the two statements holds (“disjunction”).

The sign → between two statements means that the holding of the first

entails the holding of the second, or with other words, that the first state-

ment does not hold, without the second holding as well (“implication”). An

implication A → B between two statements A and B is accordingly only

then wrong, if A is true and B is false. In all other cases it is true.

The combination of the sign of implication with the for-all-sign results

in the presentation of general hypothetical statements. For example, the

formula

(x)(y) (A(x, y)→ B(x, y)) ,

6



with A(x, y), B(x, y) standing for the presentation of certain relations be-

tween x and y, represents the statement “If A(x, y) holds, then B(x, y),” or

also: “for every pair of individuals x, y for which A(x, y) holds, B(x, y) holds

as well.”4

We use brackets in the usual way for linking together parts of formulas.

For saving brackets we stipulate that for the separation of symbolic expres-

sions → takes precedence over & and ∨, & over ∨, and that →, & , ∨

all have precedence over the for-all-sign and the there-is-sign. Brackets are

omitted if no ambiguities are possible. We write, for example, instead of the

expression

(x) ((Ey)R(x, y)) ,

in which R(x, y) designates an arbitrary relation between x and y, simply

(x)(Ey)R(x, y) because in this case only one reading is possible: “for every

x there is a y for which the relation R(x, y) holds.”—

We are now in position to write down the axiom system considered. To

make it easier the first axioms are accompanied by a linguistic version.

The demarcation of the axioms does not correspond completely to that in

Hilbert’s “Grundlagen der Geometrie.” We therefore give for each group

of axioms the relationship of the axioms here presented as formulas to those

of Hilbert.5

I. Axioms of connection.

4The relation between disjunction and implication defined here and disjunctive and

hypothetical junctions of statements in the usual sense will be discussed in § 3.
5This information is especially meant for those familiar with Hilbert’s “Grundlagen

der Geometrie.” All references are to the seventh edition.
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1. (x)(y)Gr(x, x, y).

“x, x, y always lie on one line.”

2. (x)(y)(z)(Gr(x, y, z)→ Gr(y, x, z) & Gr(x, z, y)).

“If x, y, z lie on a line, then so do y, x, z as well as x, z, y lie on a line.”

3. (x)(y)(z)(u)(Gr(x, y, z) & Gr(x, y, u) & x 6= y → Gr(x, z, u)).

“If x, y are different points and if x, y, z as well as x, y, u lie on a line

then also x, z, u lie on a line.”

4. (Ex)(Ey)(Ez)Gr(x, y, z).

“There are points x, y, z which do not lie on a line.”

Of these axioms, 1) and 2) replace the axioms I 1,—because of the changed

concept of line; 3) corresponds to the axiom I 2; and 4) corresponds to the

second part of I 3.

II. Axioms of order

1. (x)(y)(z)(Zw(x, y, z)→ Gr(x, y, z))

2. (x)(y)Zw(x, y, y) .

3. (x)(y)(z)(Zw(x, y, z)→ Zw(x, z, y) & Zw(y, x, z)) .

4. (x)(y)(x 6= y → (Ez)Zw(x, y, z)) .

“If x and y are different points, there is always a point z such that x

lies between y and z.”

5. (x)(y)(z)(u)(v)
(
Gr(x, y, z) & Zw(u, x, y) & Gr(v, x, y) & Gr(z, u, v)

→ (Ew){Gr(u, v, w) & Zw(w, x, z) ∨ Zw(w, y, z)}) .

8



1) and 2) together constitute the first part of Hilbert’s axioms II 1; 3)

unites the last part of Hilbert’s axioms II 1 with II 3; 4) is the axiom II 2;

and 5) is the axiom of plane order II 4.

III. Parallel axiom

Since we are not including congruence axioms, we must take the parallel

axiom in the following broader sense: “For every straight line there is exactly

one line through a point outside it which does not intersect it.”6

To make symbolic formulation easier the symbol

Par(x, y;u, v)

will be used as an abbreviation for the expression

(Ew)(Gr(x, y, w) & Gr(u, v, w))

“There is no point w which lies on a line both with x and y and with u and

v.”

The axiom is then

(x)(y)(z)
(
Gr(x, y, z)→ (Eu){Par(x, y; z, u) & (v)(Par(x, y; z, v)→ Gr(z, u, v))}

)
.

If we imagine the axioms here enumerated and unite them, we get a single

logical formula which represents an assertion about the predicates ‘Gr’, ‘Zw’

and which we designate as

A(Gr, Zw) .

In the same way we could represent a theorem of plane geometry involving

only position and order relations as a formula
6Cf. p. 83 of Hilbert’s “Grundlagen der Geometrie.”
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S(Gr, Zw).

This representation still accords with contentual axiomatics in which the

fundamental relations are viewed as something that can be shown in experi-

ence or in the intuitive imagination and thus definite in content about which

the statements of the theory make assertions.

On the other hand, in formal axiomatics the fundamental relations are not

conceived from the beginning as determined in content; rather they receive

their determination implicitly through the axioms; and in any consideration

of an axiomatic theory only what is expressly formulated in the axioms about

the fundamental relations is used.

As a result, if in axiomatic geometry the respective names for relations

in intuitive geometry like “lie on” or “between” are used, this is only a

concession to custom and a means of simplifying the connection of the theory

with intuitive facts. In fact, however, in formal axiomatics the fundamental

relations play the role of variable predicates.

Here and in the sequel we understand “predicate” in the wider sense so

that it also applies to predicates with two or more subjects. We speak of

“one-place”, “two-place”,. . . predicates according to the number of subjects.

In the part of axiomatic geometry considered by us there are two variable

three-place predicates:

R(x, y, z), S(x, y, z) .

The axiom system consists of a demand on two such predicates expressed

in the logical formula A(R, S), that we get from A(Gr, Zw) when we replace
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Gr(x, y, z) with R(x, y, z), Zw(x, y, z) with S(x, y, z). The identity relation

x = y which is to be interpreted contentually appears in this formula along

with the variable predicates. The acceptance of this predicate as contentu-

ally determinate is no violation of our methodological standpoint. For the

contentual determination of identity—which is no relation at all in the true

sense—does not depend on the particular range of imagination of the field

being investigated axiomatically; rather it is only related to a question of

distinguishing individuals which must be taken as already given when the

domain of individuals is laid down.

From this point of view a sentence of the form S(Gr, Zw) corresponds to

the logical statement that for any predicates R(x, y, z), S(x, y, z) satisfying

the demand A(R, S), the relation S(R, S) also holds; in other words, for any

two predicates R(x, y, z), S(x, y, z) the formula

A(R, S)→ S(R, S)

represents a true statement. In this way a geometrical sentence is transformed

into a sentence of pure predicate logic.|8

From this point of view the problem of consistency presents itself in a

corresponding way as a problem of pure predicate logic. In fact it is a ques-

tion of whether two three-place predicates R(x, y, z), S(x, y, z) can satisfy the

conditions expressed in the formula A(R, S)7 or whether, on the contrary, the

assumption that the formula A(R, S) is satisfied for a certain pair of predi-

cates leads to a contradiction so that in general for every pair of predicates

R, S the formula A(R, S) represents a correct assertion.

7This imprecise way of putting the question will be sharpened in the sequel.
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A question like the one given here is part of the “decision problem.” In

newer logic this problem is understood to be that of discovering general

methods for deciding the “validity” or “satisfiability” of logical formulas.8

In this connection the formulas investigated are composed with the help of

logical signs out of predicate variables and equalities—together with variables

in subject positions which we call “individual variables”—, and it is assumed

that every variable is bound by a for-all sign or there-is sign.

A formula of this kind is called logically valid when it represents a true

assertion for every determination of the variable predicates; it is called satis-

fiable when it represents a true assertion for some appropriate determination

of the predicate variables.

Simple examples for logically valid formulas are the following:

(x)F (x) & (x)G(x)→ (x)(F (x) & G(x))

(x)P (x, x)→ (x)(Ey)P (x, y))

(x)(y)(z)(P (x, y) & y = z → P (x, z)).

Examples for satisfiable formulas are:

(Ex)F (x) & (Ex)F (x)

(x)(y)(P (x, y) & P (y, x)→ x = y)

(x)(Ey)P (x, y) & (Ey)(x)P (x, y) .

These formulas result, e. g., in true assertions for the domain of individuals

of the numbers 1, 2, if in the first formula for F (x) “x is even” is set, in the

second formula for P (x, y) the predicate x 5 y, and in the third formula for

P (x, y) the predicate x 5 y & y 6= 1.
8This explanation is correct only for the decision problem in its narrower sense. We

have no need here to consider the broader conception of this decision problem.
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It is to be observed that along with the determination of the predicates the

domain of individuals over which the variables x, y, . . . range has to be fixed.

This enters into a logical formula as a kind of hidden variable. However, the

logical formula in respect to satisfiability is invariant with respect to a one-

one mapping of a domain of individuals onto another, since the individuals

enter into the formulas only as variable subjects; as a result the only essential

determination for a domain of individuals is the number of individuals.

Accordingly, we have to distinguish the following questions in relation to

logical validity and satisfiability:

1. The question of logical validity for every domain of individuals, and

also of satisfiability for any domain of individuals respectively.

2. The question of logical validity or satisfiability for a given number of

individuals.

3. The question for which numbers of individuals is a formula logically

valid or satisfiable.

It should be noted that it is best to leave out of consideration the domain

of 0 individuals on principle, since formally zero-numbered domains of indi-

viduals have a special status, and on the other hand consideration of them

is trivial and worthless for applications.9

9The stipulation that every domain of individuals should contain at least one thing, so

that a true general judgement must hold of at least one thing, ought not to be confused

with the convention prominent in Aristotelean logic that a judgment of the form “all S

are P” counts as true only if there are in fact things with the property S. This convention

has been dropped in newer logic. A judgment of this kind is represented symbolically in
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Furthermore one should take into account that only the “value-range” of

a predicate is relevant to its determination; that is to say, all that is relevant

is for which values of the variables in subject positions the predicate holds

or does not hold (is “true” or “false”).

This circumstance has as a consequence that for a given finite number of

individuals the logical validity or satisfiability of a specific given logical for-

mula represents a pure combinatorial fact which one can determine through

elementary testing of all cases.

To be specific, if n is the number of individuals and k the number of

subjects (“places”) of a predicate, then nk is the number of different systems

of values for the variables; and since for every one of these systems of values

the predicate is either true or false, there are

2(nk)

different possible value-ranges for a k-place predicate.

If then

R1, . . . , Rt

are the distinct predicate variables occurring in a given formula, with arities

k1, . . . , kt

then

2(nk1+nk2+...+nkt )

the form (x)(S(x) → P (x)); it counts as true if a thing x, insofar as it has the property

S(x), always has the property P (x) as well—independently of whether there is anything

with the property Sx at all. We will take up this topic again in connection with the

deductive construction of predicate logic. (See § 4 pp. 106–107.)
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is the number of systems of value-ranges to be considered, or the number of

different possible predicate systems for short.

Accordingly logical validity of the formula means that for all of these

2(nk1+nk2+...+nkt )

explicitly enumerable predicate systems the formula represents a true asser-

tion; and its satisfiability means that the formula represents a true assertion

for one of these predicate systems. Moreover, for a fixed predicate system

the truth or falsity of the assertion represented by the formula is again de-

cidable by a finite testing of cases; the reason is that only n values come into

consideration for a variable bound by a for-all sign or there-is sign so that

‘all’ has the same meaning as a conjunction with n members and ‘there is’ a

disjunction with n members.

For example, consider the formulas mentioned above

(x)P (x, x)→ (x)(Ey)P (x, y)

(x)(y)(P (x, y) & P (y, x)→ x = y)

of which the first has been referred to as a logically valid, the second as a

satisfiable, formula. We refer these formulas to a domain of two individuals.

We can indicate both individuals with the numerals 1, 2. In this case we

have t = 1, n = 2, k1 = 2; therefore the number of different predicate systems

is

2(22) = 24 = 16.

In place of (x)P (x, x) we can put

P (1, 1) & P (2, 2)
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in place of (x)(Ey)P (x, y)

P (1, 1) ∨ P (1, 2) & P (2, 1) ∨ P (2, 2) ,

so that the first of the two formulas becomes

P (1, 1) & P (2, 2)→ P (1, 1) ∨ P (1, 2) & P (2, 1) ∨ P (2, 2) .

This implication is true for those predicates P for which P (1, 1) & P (2, 2) is

false, as well as for those for which

P (1, 1) ∨ P (1, 2) & P (2, 1) ∨ P (2, 2)

is true. One can now verify that for each of the 16 value-ranges that one

gets when one assigns one of the truth values “true” or “false” to each of the

pairs of values

(1, 1), (1, 2), (2, 1), (2, 2)

one of the two conditions is satisfied; thus the whole expression always re-

ceives the value “true.” [Verification is simplified in this example because

already the determination of the values of P (1, 1) and P (2, 2) suffices to fix

the correctness of the expression.] In this way the validity of our first formula

for domains of two individuals can be determined through directly trying it

out.

For domains of two individuals the second formula has the same meaning

as the conjunction

(P (1, 1) & P (1, 1)→ 1 = 1) & (P (2, 2) & P (2, 2)→ 2 = 2)

& (P (1, 2) & P (2, 1)→ 1 = 2) & (P (2, 1) & P (1, 2)→ 2 = 1) .
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Since 1 = 1 and 2 = 2 are true the first two members of the conjunction

are always true assertions. The last two members are true if, and only if,

P (1, 2) & P (2, 1)

is false.

Therefore, to satisfy the formula under consideration one has only to

eliminate those determinations of value for P in which the pairs (1, 2) and

(2, 1) are both assigned the value “true.” Every other determination of value

produces a true assertion. The formula is therefore satisfiable in a domain

of two elements.

These examples should make clear the purely combinatorial character of

the decision problem in the case of a given finite number of individuals. One

result of this combinatorial character is that for a prescribed finite number

of individuals the logical validity of a formula F has the same meaning as

the unsatisfiability of the formula F; likewise the satisfiability of a formula

F has the same meaning as that F is not valid. Indeed F represents a true

assertion for those predicate systems for which F represents a false assertion

and vice-versa.

Let us return to the question of the consistency of an axiom system. Let

us consider an axiom system written down symbolically and combined into

one formula like our example.

The question of the satisfiability of this formula for a prescribed finite

number of individuals can be decided, in principle at least, through trying

it out. Suppose then the satisfiability of the formula is determined for a

definite finite number of individuals. The result is a proof of the consistency

of the axiom system, namely a proof by the method of exhibition, since the
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finite domain of individuals together with the value-ranges chosen for the

predicates (to satisfy the formula) constitutes a model in which we can show

concretely that the axioms are satisfied.

We give an example of such an exhibition from axiomatics in geometry.

We start from from the axiom system presented in the beginning, but replace

the axiom I 4), which postulates the existence of three points not lying on a

line, with the weaker axiom

I 4′) (Ex)(Ey)(x 6= y) .

“There are two distinct points.”

Furthermore we drop the axiom of plane order II 5); in its place we add

to the axioms10 two sentences which can be proved using II 5) by, firstly,

expanding II 4) to

II 4′) (x)(y){x 6= y → (Ez)Zw(z, x, y) & (Ez)Zw(x, y, z)} ,

and, secondly, adding

II 5) (x)(y)(z){x 6= y & x 6= z & y 6= z → Zw(x, y, z) ∨ Zw(y, z, x) ∨

Zw(z, x, y)}.

We keep the parallel axiom. The resulting axiom system corresponds to

a formula A′(R, S) instead of the earlier A(R, S); it is satisfiable in a domain

of individuals of 5 things, as O. Veblen remarked.11 The value-ranges for the

10Both of these sentences were introduced as axioms in earlier editions of Hilbert’s

“Grundlagen der Geometrie.” It turned out that they are provable using the axioms of

plane order. See pp. 5–6 of the seventh edition.
11In the investigation already mentioned “A system of axioms for geometry,” Trans.

Amer. Math. Soc. vol. 5, p. 350.
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predicates R, S are so chosen that first of all the predicate Gr is determined

to be true for every value triple x, y, z—we can here use the symbols ‘Gr’,

‘Zw’ with no danger of misunderstanding. One sees immediately that then

all axioms I as well as II 1) and III are satisfied. In order that the axioms

II 2), 3), 5′), and 4′) be satisfied it is necessary and also sufficient that the

following three conditions be placed on the predicate Zw:

1. Zw is always false for a triple x, y, z in which two elements coincide.

2. For any combination of three different of the 5 individuals, Zw is true

for 2 orderings with a common first element (of 6 possible orderings of

the elements), false for the remaining 4 orderings.

3. Each pair of different elements occurs as an initial as well as a final

pair in one of the triples for which Zw is true.

The first demand can be directly fulfilled by stipulation. The joint satis-

faction of the other two conditions is accomplished as follows: We designate

the 5 elements with the numerals 1, 2, 3, 4, 5. The number of value-triples of

three distinct elements for which Zw still has to be defined is 5·4·3 = 60. Ev-

ery six of these belong to a combination; for two of these Zw should be true

and false for the rest. We must therefore indicate those 20 of the 60 triples

for which Zw will be defined as true. They are those which one obtains from

the four triples

(1 2 5), (1 5 2), (1 3 4), (1 4 3)

by applying the cyclical permutation (1 2 3 4 5).
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It is easy to verify that this procedure satisfies all the conditions. Thus

the axiom system is recognized as consistent by the method of exhibition.12

The method of exhibition presented in this example has very many dif-

ferent applications in newer axiomatic investigations. It is especially used for

proofs of independence. The assertion that a sentence S is independent of

an axiom system A has the same meaning as the assertion of the consistency

of the axiom system as the claim that the axiom system

A & S

which we get when we add the negation of the sentence S as an axiom

to A. The consistency can be determined by the method of exihibition if

this axiom system is satisfiable in a finite domain domain of individuals.13

Thus this method provides a sufficient extension of the method of progressive

inferences for many fundamental investigations in the sense that the unprov-

ability of a sentence from certain axioms can be proved through exhibition,

its provability through inference.

But is the application of the method of exhibition restricted in its appli-

cation to finite domains of individuals? We cannot derive this from what we

have said up until now. However, we do see immediately that in the case

of an infinite domain of individuals the possible systems of predicates no

12It follows immediately from the fact that the modified axiom system A′ is satisfiable

in a domain of 5 individuals that the axioms of this system do not completely determine

linear ordering.
13A great number of examples of this procedure can be found in the works on linear

and cyclical order by E. V. Huntington and his collaborators. See especially “A new set

of postulates for betweenness with proof of complete independence”, Trans. Amer. Math.

Soc. vol. 26 (1924) pp. 257–282. Here one also finds references to previous works.
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longer constitute a surveyable multitude and there can be no talk of testing

all value-ranges. Nevertheless in the case of given axioms we might be in a

position to show their satisfiability by given predicates. And this is actually

the case. Consider for example the system of three axioms

(x)R(x, x) ,

(x)(y)(z)(R(x, y) & R(y, z)→ R(x, z)

(x)(Ey)R(x, y).

Let us clarify what these say: We start with an object a in the domain of

individuals. According to the third axiom there must be a thing b for which

R(a, b) is true; and because of the first axiom, b must be different from a. For

b there must further be a thing c for which R(b, c) is true, and because of the

second axiom R(a, c) is also true; according to the third axiom c is distinct

from a and b. For c there must again be a thing d for which R(c, d) is true.

For this thing R(a, d) and R(b, d) are also true, and d is distinct from a, b, c.

The method of this consideration here has no end; and it shows us we cannot

satisfy the axioms with a finite domain of individuals. On the other hand

we can easily show satisfaction by an infinite domain of individuals: We take

the integers as individuals and substitute the relation “x is less than y” for

R(x, y); one sees immediately that all three axioms are satisfied.

It is the same with the axioms

(Ex)(y)S(y, x) ,

(x)(y)(u)(v)(S(x, u) & S(y, u) & S(v, x)→ S(v, y)) ,

(x)(Ey)S(x, y) .

One can easily ascertain that these cannot be satisfied with a finite domain

of individuals. On the other hand they are satisfied in the domain of positive
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integers if we replace S(x, y) with the relation “y immediately follows x.”

However, we notice in these examples that exhibiting in these cases does

by no means conclusively settle the question of consistency; rather the ques-

tion is reduced to that of the consistency of number theory. In the earlier

example of finite exhibition we took integers as individuals. There, however,

this was only for the purpose of having a simple way to designate individu-

als. Instead of numbers we could have taken other things, letters for example.

And also the properties of numbers which were used could have been estab-

lished by a concrete exhibition.

In the case now before us, however, a concrete idea of number is not

enough; for we essentially need the assumption that the integers constitute

a domain of individuals and therefore a ready totality.

We are, of course, quite familiar with this assumption since in newer

mathematics we are constantly working with it; one is inclined to consider it

perfectly natural. It was Frege who vigorously and with a sharp and witty

critique first established that the idea of the sequence of integers as a ready

totality must be justified by a proof of consistency.14 According to Frege,

such a proof had to be carried out in the sense of an exhibition, as an exis-

tence proof; and he believed he could find the objects for such an exhibition

in the domain of logic. His method of exhibition amounts to defining the

totality of integers with the help of the totality (presupposed to exist) of

all conceivable one-place predicates. However, the underlying assumption,

which under impartial consideration seems very suspect anyway, was shown

14
Gottlob Frege, “Grundlagen der Arithmetik”, Breslau 1884, and “Grundgesetze

der Arithmetik”, Jena 1893.
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to be untenable by the famous logical and set-theoretic paradoxes discovered

by Russell and Zermelo. And the failure of Frege’s undertaking has

made us even more conscious of the problematic character of assuming the

totality of the number sequence than did his dialectic.

In the light of this difficulty we might try to use some other infinite do-

main of individuals instead of the sequence of integers for the purpose of

proving consistency, a domain taken from the realm of sense perception or

physical reality rather than being a pure product of thought like the sequence

of integers. However, if we look more closely we will realize that wherever

we think we encounter infinite manifolds in the realm of sensible qualities or

in physical reality there can be no talk of the actual presence of such a man-

ifold; rather the conviction that such a manifold is present rests on a mental

extrapolation, the justification of which is as much in need of investigation

as the conception of the totality of the sequence of integers.

A typical example in this connection is those cases of the infinite which

gave rise to the well-known paradox of Zeno. Suppose some distance is

traversed in a finite time; the traversal includes infinitely many successive

subprocesses: the traversal of the first half, then of the next quarter, then

the next eighth, and so on. If we are considering an actual motion, then

these subtraversals must be real processes succeeding one another.

People have tried to refute this paradox with the argument that the sum

of infinitely many time intervals may converge producing a finite duration.

However, this reply does not come to grips with an essential point of the

paradox, namely the paradoxical aspect that lies in the fact that an infinite

succession, the completion of which we could not accomplish in the imagina-
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tion either actually or in principle, should be accomplished in reality.

Actually there is a much more radical solution of the paradox. It consists

in considering that we are by no means forced to believe that the mathemat-

ical space-time representation of movement remains physically meaningful

for arbitrarily small segments of space and time; rather there is every reason

to assume that a mathematical model extrapolates the facts of a certain do-

main of experience, e.g., just the movements, within the range of magnitudes

accessible to our observation up to now for the purpose of a simple concep-

tual structure; this is similar to continuum mechanics which carries out an

extrapolation in taking as a basis the idea of space as filled with matter; it

is no more the case that unbounded division of a movement always produces

something characterizable as movement than that unbounded spatial divi-

sion of water always produces quantities of water. When this is accepted the

paradox vanishes.

Notwithstanding, the mathematical model of movement has, as an ideal-

izing concept formation, its value for the purpose of simplified representation.

For this purpose it must not only coincide approximately with reality, but

it has to meet the condition that the extrapolation it involves must be con-

sistent in itself. From this point of view the mathematical conception of

movement is not in the least shaken by Zeno’s paradox; the mathematical

counterargument just referred to has in this case complete validity. It is an-

other question however, whether we possess a real proof of the consistency

of the mathematical theory of motion. This theory depends essentially on

the mathematical theory of the continuum; this in turn depend essentially

on the idea of the set of all integers as a ready totality. We therefore come
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back by a roundabout way to the problem we tried to avoid by referring to

the facts about motion.

It is much the same in every case in which a person thinks he can show

directly that some infinity is given in experience or intuition, for example the

infinity of the tone row extending from octave to octave to infinity, or the

continuous infinite manifold involved in the passage from one color quality

to another. Closer consideration shows in every case that in fact no infinity

is given at all; rather it is interpolated or extrapolated through some mental

process.

These considerations make us realize that reference to non-mathematical

objects can not settle the question whether an infinite manifold exists; the

question must be solved within mathematics itself. But how should one

make a start with such a solution? At first glance it seems that something

impossible is being demanded here: to present infinitely many individuals is

impossible in principle; therefore an infinite domain of individuals as such

can only be indicated through its structure, i. e., through relations holding

among its elements. In other words: a proof must be given that for this

domain certain formal relations can be satisfied. The existence of an infinite

domain of individuals can not be represented in any other way than through

the satisfiability of certain logical formulas ; but these are exactly the kind of

formulas we were led to through investigating the question of the existence

of an infinite domain of individuals; and the satisfiability of these formulas

was to have been demonstrated by the exhibition of an infinite domain of

individuals. The attempt to apply the method of exhibition to the formulas

under consideration leads then to a vicious circle.
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But exhibition should serve only as a means in proofs of the consistency of

axiom systems. We were led to this procedure through considering domains

with a given finite number of individuals, and just through recognizing that

in such domains the consistency of a formula has the same significance as its

satisfiability.

The situation is more complicated in the case of infinite domains of in-

dividuals. It is true in this case also that an axiom system represented by a

formula A is inconsistent if, and only if, the formula A is logically valid. But

since we are no longer dealing with a surveyable supply of value-ranges for

the variable predicates, we can no longer conclude that if A is not logically

valid, there is some model for satisfying the axiom system A at our disposal.

Accordingly, when an infinite domain of individuals is under consider-

ation, the satisfiability of an axiom system is a sufficient condition for its

consistency, but it is not proved to be a necessary condition. We cannot

therefore expect that in general a proof of consistency can be accomplished

by means of a proof of satisfiability. On the other hand we are not forced

to prove consistency by establishing satisfiability; we can just hold to the

original negative sense of inconsistency. That is to say—if we again imagine

an axiom system represented by a formula A—we do not have to show that

satisfiability of the formula A, but only need to prove that the assumption

that A is satisfied by certain predicates cannot lead to a logical contradiction.

To attack the problem in these terms we must first aim at an overview

of the possible logical inferences that can be made from an axiom system.

The formalization of logical inference as developed by Frege, Schröder,

Peano, and Russell presents itself as an appropriate means to this end.
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We have thus arrived at the following tasks: 1. to formalize rigorously

the principles of logical inference and by this turn them into a completely

surveyable system of rules; 2. to show for a given axiom system A (which is

to be proved consistent), that starting with this system A no contradiction

can arise via logical deductions, that is to say, no two formulas of which one

is the negation of the other can be proved.

However, we do not have to carry out this proof for each axiom system

individually; for we can make use of the method of arithmetizing to which we

referred at the beginning. From the point of view we have reached now this

procedure can be characterized as follows: we chose an axiom system A that

on the one hand has a structure surveyable to such an extent that we can give

a proof of consistency (in the sense of the second task); that, on the other

hand, is so rich that we can derive the satisfiability of axiom systems for the

branches of geometry and physics from the presupposition that A is satisfied

by a system S of things and relations in such a way that we represent the

objects of such an axiom system B by individuals or complexes of individuals

from S and put as fundamental relations such predicates which can be formed

from the fundamental relations of S using logical operations.

This suffices to show that the axiom system B is in fact consistent; for any

contradiction arising from this axiom system as conclusion would represent

a contradiction derivable from the axiom system A even though the axiom

system A is known to be consistent.

Arithmetic (axiomatically constructed) presents itself as such an A.

The “method of reduction” of axiomatic theories to arithmetic does not

depend upon arithmetic being a set of facts presentable to the intuition;
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arithmetic need rather be no more than a formation of ideas which we can

prove consistent and which provides a systematic framework encompassing

the axiom systems of the theoretical sciences; because they are encompassed

in this framework, the idealizations of what is actually given which, executed

in them will also be proved consistent.—

We now summarize the results of our latest considerations: The problem

of the satisfiability of an axiom system (or a logical formula) can be positively

solved in the case of a finite domain of individuals by exhibition; but in

the case where the satisfaction of the axioms requires an infinite domain of

individuals this method is no longer applicable because it is not determined

whether an infinite domain of individuals cannot be considered as settled;

rather, the introduction of such infinite domains is only justified by a proof

of the consistency of an axiom system characterizing the infinite.

Because of the failure of a positive decision method, there remains only

one possibility: there is only the way of proving consistency in the negative

sense, i.e., a proof of impossibility ; such a proof requires a formalization of

logical inference.—

If we are going to approach the task of giving such a proof of impossibility

we must be clear that it cannot be carried out using axiomatic-existential

methods of inference. Rather we may use only those kinds of inferences

which are free from idealizing assumptions of existence.

As a result of these considerations the following thought comes at once

to mind: If this proof of impossibility can be carried out without axiomatic-

existential assumptions, shouldn’t it also be possible to found all of arithmetic

directly in the same way thereby making the proof of impossibility completely
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superfluous? We will consider this question in the following paragraph.
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