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In considering axiomatizations of geometry we have the impression of a

great multiplicity of principles according to which such axiomatizations can

take place, and already have taken place. The original, simple idea, that one

could just speak of the axioms of geometry was not only superseded by the

discovery of non-Euclidean geometries but, moreover, by the insight into the

possibility of different axiomatizations of one and the same geometry. But

substantially different methodological principles have also arisen generally,

according to which one has undertaken the axiomatization of geometry and

whose purposes are in certain respects even antagonistic.
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The seed for this multiplicity can already be found in Euclidean axiomat-

ics. For its formulation was determined by the fact that one was led by

geometry to the general problem of axiomatics for the first time. Here geom-

etry is simply all of mathematics, so to speak. The methodological relation

to number theory is not completely clear. In certain places a bit of number

theory is developed using the intuitive idea of number. Moreover the con-

cept of number is used contentfully in the theory of proportions, even with

an implicit inclusion of the tertium non datur, although it seems that one

attempted to avoid its unrestricted use.

While the special methodological position of the concept of number is

not especially pronounced here, the concept of magnitude is explicitly put

forward as a contentful tool. This is done, incidentally, in a manner that

we can no longer accept today, namely by assuming as a matter of course

that different objects can have the character of magnitudes. The concept

of magnitude is, of course, also subjected to axiomatization; however, in

this regard the axioms are explicitly separated from the remaining axioms as

antecedent (κoινaὶ
,
εννιaὶ). These axioms are of a similar kind as those which

are used today for Abelian groups. But what remained undone, because of

the methodological standpoint at the time, was to determine axiomatically

which objects were to be regarded as magnitudes.

Thus it is all the more admirable that one was then already sensitive to

the peculiarity of that assumption by which the Archimedean magnitudes, as

we call them today, are characterized. The Archimedean (Eudoxean) axiom

is then, in the medieval tradition that followed the Greeks, used in particular

in the Arabic investigations of the parallel axiom. It also occurs essentially
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in Saccheri’s proof of the elimination of the “hypothesis of the obtuse angle”.

This elimination is in fact impossible without the Archimedean axiom, since

a non-Archimedean, weakly-spherical (resp. weakly-elliptical) geometry is in

accordance with the axioms of Euclidean geometry, except for the parallel

axiom.

The second axiom of continuity, which was formulated in the late 19th cen-

tury, does not yet occur in any of these investigations. It could be dispensed

with in the proofs for which it came into question—like in the determination

of areas and lengths—because of the already mentioned use of the concept of

magnitude, according to which it was for example taken for granted that both

the area of the circle and the circumference of the circle possess a definite

magnitude. In place of the old theory of magnitudes at the beginning of mod-

ern times came, as a predominant and super-ordinated discipline, the theory

of magnitudes of analysis, which developed quite prolifically both formally

and contentually still before it reached methodological clarity.

Of course, analysis at first played no significant role in the discovery of

non-Euclidean geometry, but it became dominant in the following investiga-

tions of Riemann and Helmholz, and later Lie, for the identification of the

three special geometries by certain very general, analyticaL conditions. In

particular it is characteristic for this treatment of geometry that one not only

takes the particular spatial entities as objects, but also the spatial manifold

itself. The enormous conceptual and formal means which mathematics had

obtained in the meantime showed up in the possibility of carrying out such

an investigation. And the conceptual and speculative direction which math-

ematics took in the course of the 19th century is expressed in the formulation
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of the general problem.

The differential geometrical treatment of the foundations of geometry was

developed further, until very recent times, by Hermann Weyl, as well as Elie

Cartan and Levi-Civitá, in connection with Einstein’s general relativity the-

ory. Despite the impressiveness and elegance of what has been achieved in

this respect, mathematicians were not content with it from a foundational

standpoint. At first one tried to free oneself from the fundamental assump-

tion of the methods of differential geometry of the differentiability of the

mappings. For this the development of the methods of a general topology

was needed, which began at the turn of the century and has taken such

an impressive course of development since then. Moreover one strove for

independence from the assumption of the Archimedean character of the ge-

ometrical magnitudes in general.

This tendency is part of that development by which analysis in some sense

lost its previously predominant position. This new stage in mathematical

research followed the consequences of the already mentioned conceptual and

speculative direction of mathematics of the 19th century, which appeared in

particular in the creation of general set theory, in the sharper foundation of

analysis, in the constitution of mathematical logic, and in the new version of

axiomatics.

At the same time it was characteristic for this new stage that one returned

again to the methods of ancient Greek axiomatics, as happened repeatedly in

those epochs in which emphasis was put on conceptual precision. In Hilbert’s

Foundations of Geometry we find on the one hand this return to the old ele-

mentary axiomatics, of course with a fundamentally changed methodological
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conception, and on the other hand the exclusion, as far as possible, of the

Archimedean axiom as a principal theme: in the theory of proportions, in

the concept of area, and in the foundation of the line segment calculus. For

Hilbert, by the way, this kind of axiomatization was not intended to be ex-

clusive; shortly afterwards he put a different kind of foundation along side

it, in which the program of a topological foundation mentioned above was

formulated and carried out for the first time.

Around the same time as Hilbert’s foundation, the axiomatization of ge-

ometry was also cultivated in the school of Peano and Pieri. Shortly after-

wards the axiomatic investigations of Veblen and R. L. Moore followed; and

by then the directions of research were chosen along which occupation with

the foundations of geometry proceeds also today. As is characteristic of it,

there are numerous methodological directions.

One of them seeks to characterize the multiplicity of congruent trans-

formations by conditions that are as general and succinct as possible. The

second one puts the projective structure of space at the beginning and strives

to reduce the metrical structure to the projective with the methods devel-

oped by Cayley and Klein. And the third aims at elementary axiomatization

of the full geometry of congruences.

Different and fundamentally new points of view were added during the de-

velopment of these directions. Firstly, the projective axiomatization gained

an increased systematization through lattice theory. In addition, one be-

came aware that the set-theoretic and function-theoretic concept formations

can be deemphasized in the identification of the group of congruent trans-

formations by identifying the transformations with structures determining
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them. Therewith the procedure approaches that of elementary axiomatics,

since the group relations are now represented as relations between geometric

structures.

But I do not want to speak further of these two directions of research in

geometrical axiomatics, for which more authentic representatives are present

here, and also not of the successes that have been achieved using topolog-

ical methods, about which the newest essays of Freudenthal give a survey.

Instead, I turn to the questions of the direction of axiomatization that was

mentioned in the third place.

Even within this direction we find a multiplicity of possible goals. On

the one hand one can aim to manage with as few as possible basic elements,

perhaps only one basic predicate and one sort of individuals. On the other

hand one can especially aim to isolate natural separations of parts of the

axiomatics. These viewpoints lead to different alternatives.

So on the one hand the consideration of non-Euclidean geometry suggests

the preliminary investigation of an “absolute” geometry. On the other hand

something is to be said for a procedure that starts off with affine vector ge-

ometry, as is done at the beginning of Weyl’s “Space, Time, Matter”. The

demands of both these viewpoints can hardly be satisfied with a single ax-

iomatic system. Starting with the axioms of incidence and ordering it is a

possible and elegant conceptual reduction to reduce the concept of collinear-

ity to the concept of betweenness, in the way of Veblen. On the other hand

it is important for some considerations to separate the consequences of the

incidence axioms which are independent of the concept of ordering. So it is

desirable to realize the independence of the foundation of the line segment
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calculus on the incidence axioms from the ordering axioms. In the theory of

ordering itself one has again realized the possibility of replacing the axioms

of linear ordering by applications of the axiom of Pasch; on the other hand in

some respect a formulation of the axioms is preferable in which those axioms

are separated which characterize the linear ordering.

The multiplicity of the goals that are possible, and are also pursued in

fact, is not exhausted in the least by these examples of alternatives. Indeed it

is a possible and plausible, but not obligatory, regulative viewpoint that the

axioms should be formulated in such a way that they refer only to a limited

part of space respectively. This thought is implicitly at work already in

Euclidean axiomatics; and it may also be that the offense that has been taken

so early at the parallel axiom relies precisely on the fact that the concept of

a sufficiently long extension occurs in the Euclidean formulation. The first

explicit realization of the mentioned program happened with Moritz Pasch,

and it was followed by the introduction of ideal elements by intersection

theorems, which is a method for the foundation of projective geometry that

has been successively developed since.

A different kind of possible additional task is to imitate conceptually the

blurriness of our pictorial imagination as it was done by Hjelmslev. This re-

sults not only in a different kind of axiomatization, but in a variant relational

system, which has not found much approval because of its complication. But

also without moving so far from the customary manner in this direction it

is possible to aim at something similar, in some respects, by avoiding the

concept of point as a basic term as it is done in various interesting newer

axiomatizations, in particular in Huntington’s.
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One thus sees in a great number of ways that there is no definite optimum

for the formulation of a geometric axiom system. As regards the reductions

with respect to the basic concepts and the sorts of things, it must always be

recalled that, regardless of the general interest any such possibility of reduc-

tion may have, a real application of such a reduction is only recommended

when it leads to a clear formulation of the axiom system.

Certain directives for reductions which are generally acceptable can, how-

ever, be stated. Let us take for example the Hilbertian version of axiomatics.

In it, on the one hand, lines are taken as a kind of things, on the other hand

the rays are introduced as point sets and afterwards the angles are explained

as ordered pairs of two rays that originate in the same point, thus as a pair of

sets. Here real possibilities of simplifying reductions are given. One may be

of different opinion whether one wants to start with only one sort of points

instead of the different sorts “point, line, plane”, whereby the the relations

of collinearity and coplanarity of points replace the relations of incidence. In

the lattice theoretical treatment the lines and planes are taken to be on par

with points as things. Here again there is an alternative. Whereas to intro-

duce the rays as point sets transcends in any case the scope of elementary

geometry and is not necessary for it. Generally we can take as a directive that

higher types should not be introduced without need. This can be avoided

in the case of the definition of angle by reducing the statements about an-

gles by statements about point triples, as was carried out by R. L. Moore.1

An even further reduction is achieved here by explaining the congruence of

1R.L. Moore: “Sets of metrical hypothese for geometry,” Trans. Amer. Math. Soc.,

vol. 9 (1908), pp. 487–512. [Footnotes 1–4, 7, 8 were added later]
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angles using congruence of line segments, but here again a certain loss takes

place. Namely, the proofs rest substantially on the congruence of differently

oriented triangles. Thus this kind of axiomatization is not suitable for the

kind of problems of the Hilbertian investigations, which refer to the relation-

ship between oriented congruence and symmetry. This remark concerns also

most other axiomatizations, which turn on the concept of reflection .

Besides the general viewpoints, I want to mention as something partic-

ular a special possibility of the formulation of an elementary axiom system,

namely one in which the concept “the triple of points a, b, c forms a right

angle at b” is taken as the only basic relation and the points are the only

basic sort, a program which has recently been called attention to in a paper

by Dana Scott.2 The mentioned relation satisfies the necessary condition as-

certained by Tarski for a single sufficient basic predicate for plane geometry.

In comparison with Pieri’s technique, which has become exemplary for an

axiomatic of this kind, and which took an axiomatization of the relation “b

and c have the same distance from a” as basic predicate, it seems to permit

a simplification, inasmuch the concept of the collinearity of points is closer

to that of a right angle than Pieri’s basic concept. As respects the concept of

congruence there seems to be no simplification for the axioms of congruence

from the relation considered. By the way, this axiomatization is one of those,

like the one by Pieri, which do not distinguish oriented congruence3.

2Dana Scott: “A symmetric primitive notion for Euclidean geometry,” Indagationes

Mathematicae, vol. 18 (1956), pp. 456–461.
3Some details on the definitions of the concepts of incidence, ordering, and congruence

from the concept of a right angle, as well as of part of the axiom system, follow in the

appendix.
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For an elementary axiomatization of geometry the special question presents

itself of obtaining completeness, in the sense of categoricity. In most axiom

systems this is obtained by the continuity axioms. But the introduction

of these axioms involves, as is known, a transgression of the usual frame-

work of concepts of predicates and sets. We have, however, learned from

Tarski’s investigations that completeness, at least in the deductive sense,

can be obtained in an elementary framework, where it is noteworthy that

the [Dedekind] cut axiom is preserved in a particular formalization, whereas

the Archimedean axiom is omitted. The Archimedean axiom is insofar for-

mally unusual, in that in logical formalization it has the form of an infinite

disjunction, whereas the cut axiom is representable by an axiom schema, due

to its general form. Thus it can be adapted in its use to the formal framework,

whereby for the elementary framework of predicate logic the provability of

the Archimedean axiom from the cut axiom is then lost. Of course, such a re-

striction to the framework of predicate logic has as a consequence that some

considerations are possible only meta-theoretically, for example, the proof of

the theorem that a simple closed polygon decomposes the plane, and also the

considerations about equality of supplementation and decomposition of poly-

gons. Here one is again faced with an alternative, namely whether to begin

with the viewpoint of an elementary logical framework, or then again not to

restrict oneself with respect to the logical framework, whereby incidentally

different gradations can be considered.

With respect to the application of a second-order logic I only want to

recall here that it can be made precise in the framework of axiomatic set

theory, and that no noticable restriction of the methods of proof result. Also
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the Skolem paradox does not present a real inconvenience in the case of

geometry, since it can be eliminated in the model theoretic considerations by

equating the concept of set which occurs in one of the higher axioms with

the concept of set of model theory.

Finally I want to emphasize that the fact, which I have stressed in my

remarks, that there is no definite optimum for the systems of axiomatics,

does not at all mean that the results of geometric axiomatics necessarily

have an imperfect or fragmentary character. As you know, in this field a

number of systems of great perfection and elegance have been achieved. The

multiplicity of possible goals is responsible for the older systems not generally

being simply outdated by newer ones, and at the same time every perfection

attained still leaves room for further efforts.

Appendix. Remarks on the task of an axiomatizing Euclidean plan geom-

etry with a single basic relation R(a, b, c): “the triple of points a, b, c forms

a right angle at b.” The axiomatization succeeds as it does, in a simple way,

because only the relations of collinearity and parallelism are considered. The

following axioms suffice for the theory of collinearity:

A1 ¬R(a, b, a)

A2 R(a, b, c)→ R(c, b, a) & ¬R(a, c, b)4

A3 R(a, b, c) & R(a, b, d) & R(e, b, c)→ R(e, b, d)

A4 R(a, b, c) & R(a, b, d) & c 6= d & R(e, c, b)→ R(e, c, d)

4Already this axiom excludes elliptic geometry.
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A5 a 6= b→ (Ex)R(a, b, x)

The definition of the relation Coll(a, b, c) is added: “the points a, s, c are

collinear:”

Definition 1. Coll(a, b, c)↔ (x)(R(x, a, b)→ R(x, a, c)) ∨ a = c.

Then the following theorems are provable:

(1) Coll(a, b, c)↔ a = b ∨ a = c ∨ b = c ∨ (Ex)(R(x, a, b) & R(x, a, c))

(2) Coll(a, b, c)→ Coll(a, c, b) & Coll(b, a, c)

(3) Coll(a, b, c) & Coll(a, b, d) & a 6= b→ Coll(b, c, d)

(4) R(a, b, c) & Coll(b, c, d) & b 6= d→ R(a, b, d)

(5) R(a, b, c)→ ¬Coll(a, b, c)

(6) R(a, b, c) & R(a, b, d)→ Coll(b, c, d)

(7) R(a, b, c) & R(a, b, d)→ ¬R(a, c, d).

Proof: Coll(c, d, b) & c 6= b→ (R(a, c, d)→ R(a, c, b))

(8) R(a, b, c) & R(a, b, d) & R(a, e, c) & R(a, e, d)→ c = d ∨ b = e.

Proof:

Coll(b, c, d) & Coll(e, c, d) & c 6= d→ Coll(b, c, e)

Coll(b, c, e) & b 6= e & R(a, b, c)→ R(a, b, e)

Coll(e, c, b) & b 6= e & R(a, e, c)→ R(a, e, b)

R(a, b, e)→ ¬R(a, e, b).

For the theory of parallelism, we add two further axioms:

12



A6 a 6= b & a 6= c→

(Ex)(R(x, a, b) & R(x, a, c))∨

(Ex)(R(a, x, b) & R(a, x, c)) ∨R(a, b, c) ∨R(a, c, b)

In plain language, the axiom says that it is possible to draw a perpendic-

ular to a line bc from a point a lying off from it. The unique determination

of a perpendicular depending on a point a and a line bc results with the help

of (4) and (8).

A7 R(a, b, c) & R(b, c, d) & R(c, d, a)→ R(d, a, b)

This is a form of the Euclidean parallel axiom in the narrower, angular met-

rical sense.

Parallelism is now defined by:

Definition 2. Par(a, b; c, d)↔ a 6= b & c 6= d & (Ex)(Ey)(R(a, x, y) &

R(b, x, y) & R(c, y, x) & R(d, y, x))

As provable theorems the following arise:

(9) Par(a, b; c, d)→ Par(b, a; c, d) & Par(c, d; a, b)

(10) Par(a, b; c, d)→ a 6= c & a 6= d & b 6= c & b 6= d

(11) Par(a, b; c, d)↔ a 6= b & c 6= d & (Ex)(Eu)((R(a, x, u) ∨ x = a) &

(R(b, x, u) ∨ x = b) & (R(x, u, c) ∨ u = c) & (R(x, u, d) ∨ u = d))

For the proof of the implication from right to left one has to show that

there are at least five different points lying on the line a, b, which succeeds

with the help of axioms A1–A6.
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(12) Par(a, b; c, d) → (x)((R(a, x, c) ∨ x = a) & (R(b, x, c) ∨ x = b) →

R(x, c, d))

(13) Par(a, b; c, d) & Coll(a, b, e) & b 6= e→ Par(b, e; c, d)

and thus in particular:

(14) Par(a, b; c, d)→ ¬Coll(a, b, c);

moreover

(15) Par(a, b; c, d) & Coll(a, b, e)→ ¬Coll(c, d, e)

(16) ¬Coll(a, b, c)→ (Ex)Par(a, b; c, x)

(17) Par(a, b; c, d) & Par(a, b; c, e)→ Coll(c, d, e)

(18) Par(a, b; c, d) & Par(a, b; e, f)→

Par(c, d; e, f) ∨ (Coll(e, c, d) & Coll(f, c, d)).

The concept of vector equality is also tied up with the concept of paral-

lelism: “a, b and c, d are the opposite sides of a parallelogram”.

Definition 3. Pag(a, b; c, d)↔ Par(a, b; c, d) & Par(a, c; b, d)

Herewith one can prove:

(19) Pag(a, b; c, d)→ Pag(c, d; a, b) & Pag(a, c; b, d)

(20) Pag(a, b; c, d) & Pag(a, b; c, e)→ d = e

(21) Pag(a, b; c, d)→ ¬Coll(a, b, c).

For the proof of the existence theorem
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(22) ¬Coll(a, b, c)→ (Ex)Pag(a, b; c, x)

one needs a further axiom:

A8 R(a, b, c)→ (Ex)(R(a, c, x) & R(c, b, x)).

It is generally provable with the help of this axiom that two different,

non-parallel lines have a point of intersection:

(23) ¬Coll(a, b, c) & ¬Par(a, b; c, d)→

(Ex)(Coll(a, b, x) & Coll(c, d, x)). —

It is left open whether it is possible to achieve altogether a clear axiom

system using the basic concept R. Here we content ourself with stating

definitions for the fundamental further concepts. For these it is in any case

possible to attain a certain clarity.

The following two different definitions of the relation “a is the center of

the line segment b, c” are related to the figure of the parallelogram:

Definition 41. Mp1(a; b, c)↔ (Ex)(Ey)(Pag(b, x; y, c) &

Coll(a, b, c) & Coll(a, x, y))

Definition 42. Mp2(a; b, c)↔ (Ex)(Ey)(Pag(x, y; a, b) & Pag(x, y; c, a)).

According to the second definition one can prove the possibility of dou-

bling a line segment:

(24) a 6= b→ (Eu)Mp2(a; b, u).

The existence of the center of a line segment according to Df. 41, i.e.,

(25) b 6= c→ (Eu)Mp1(u; b, c),
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is provable if one adds the axiom:

A9 Par(a, b; c, d) & Par(a, c; b, d)→ ¬Par(a, d; b, c).

(In a parallelogram the diagonals intersect.)

By specializing the figure pertaining to the definition of Mp1 we obtain

the definition of the relation: “a, b, c form a isosceles triangle with the peak

at a”:

Definition 51. Ist1(a; b, c)↔ (Eu)(Ev)(Pag(a, b; c, v) & R(a, u, b) &

R(a, u, c) & R(b, u, v)).

With the help of Mp1 and Ist1 we can define Pieri’s basic concept: “a

has the same distance from b and c”:

Definition 6. Is1(a; b, c)↔ b = c ∨Mp1(a; b, c) ∨ Ist1(a; b, c).

A different kind of definition of the concept Is is based on the use of

symmetry. The following auxiliary concept is used for this: “a, b, c, d, e form

a ‘normal’ quintuple”:

Definition 7. Qn(a, b, c, d, e)↔ R(a, c, b) & R(a, d, b) & R(a, e, c) &

R(a, e, d) & R(b, e, c) & c 6= d.

With the help of Qn we obtain a further way of defining Mp and Ist:

Definition 43. Mp3(a; b, c)↔ (Ex)(Ey)Qn(x, y, b, c, a)

Definition 52. Ist2(a; b, c)↔ (Ex)(Ey)Qn(a, x, b, c, y),

from which Is2 can be defined respectively like Is1.

Moreover also the definition of the reflection of points a, b with respect

to a line c, d follows:
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Definition 8. Sym(a, b; c, d)↔ c 6= d &

(Ex)(Ey)(Ez)(Coll(x, c, d) & Coll(y, c, d) & Qn(x, y, a, b, z)). —

Finally, for the definition of congruence of line segments we still need the

concept of oriented congruence on a line: “the line segments a b and c d are

collinear, congruent, and oriented in the same direction”:

Definition 91. Lg1(a, b; c, d)↔ Coll(a, b, c) &

(Ex)(Ey)(Pag(a, x; b, y) & Pag(c, x; d, y)),

or also:

Definition 92. Lg2(a, b; c, d)↔ Coll(a, b, c) & a 6= b & (Ex)(Mp(x; b, c) &

Mp(x; a, d)) ∨ (a = d & Mp(a; b, c)) ∨ (b = c & Mp(b; a, d)),

(where any of the three definitions above can be taken for Mp.) Now the

congruence of line segments can be defined altogether (with any of the two

definitions of Lg):

Definition 10. Kg(a, b; c, d)↔ Lg(a, b; c, d) ∨ Lg(a, b; d, c) ∨

(a = b & Is1(a; b, d)) ∨ (Ex)(Pag(a, b; c, x) & Is1(c;x, d)).

By a definition analogous to that of Lg2 it is possible to introduce the

congruence of angles with the same vertex as a six-place relation, after one

has already introduced the concept of angle bisection: “d 6= a lies on the

bisection of the angle b a c”:

Definition 11. Wh(a, d; b, c)↔ ¬Coll(a, b, c) &

(Ex)(Ey)(Ez)(Coll(a, c, x) & Coll(a, d, y) & Qn(a, y, b, x, z)).
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In consideration of the composite character of this congruence relation

Kg, one will reduce the laws about Kg in the axiomatization to the concepts

that occur as parts of the defining expression. Because of the variety of

definitions for Mp, Ist, Is there are alternatives depending on whether one

employs the relations of parallelism or of symmetry more. In any case, the

axiom of vector geometry

A10. Pag(a, b; p, q) & Pag(b, c; q, r)→

Pag(a, c; p, r) ∨ (Coll(a, c, p) & Coll(a, c, r))

or an equivalent one should be useful. On the whole one could set oneself as

a goal to represent the interaction of parallelism and reflection that occurs

in Euclidean plane geometry in a most symmetric way.

Finally, with respect to the betweenness relation, the form of the defini-

tion of the relation “a lies between b and c” is already contained as a part in

that of Qn. Namely, we can define:

Definition 12. Bt(a; b, c)↔ (Ex)(R(b, a, x) & R(c, a, x) & R(b, x, c)).

For this concept, at first, is provable:

(26) ¬Bt(a; b, b)

(27) Bt(a; b, c)→ Bt(a; c, b)

(28) Bt(a; b, c)→ Coll(a, b, c)

and also using A5, A6, and A8

(29) a 6= b→ (Ex)Bt(x; a, b) & (Ex)Bt(b; a, x).
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To obtain further properties of the betweenness concept the following

axioms can be used:

A11 R(a, b, c) & R(a, b, d) & R(c, a, d) & R(e, c, b)→ ¬R(b, e, d)

A12 R(a, b, d) & R(d, b, c) & a 6= c→ Bt(a; b, c) ∨Bt(b; a, c) ∨Bt(c; a, b)

A13 Bt(a; b, c) & Bt(b; a.d)→ Bt(a; c, d)

A14 R(a, b, d) & R(d, b, c) & R(a, c, e) & Bt(d; a, e)→ Bt(b; a, c)

From this axiom it is possible to obtain the more general theorem in a

few steps:

(30) Bt(b; a, c) & Coll(a, d, e) & Par(b, d; c, e)→ Bt(b; a, c)

This succeeds using the theorem

(31) R(a, b, e) & R(e, b, c) & R(b, a, d) & R(b, c, f) & R(b, e, d) &

R(b, e, f) & Bt(b; a, c)→ Bt(e; d, f).

which can be derived from the aforementioned axiom A10.

With the help of (30) and axiom A13 one can prove:

(32) ¬Coll(a, b, c) & Bt(b; a, d) & Bt(e; b, c)→

(Ex)(Coll(e, d, x) & Bt(x; a, c)).

i.e., Pasch’s axiom in the narrower formulation of Veblen. —

In conclusion, I want to mention the following definition of Kg using the

concepts Is and Bt, which is based on a construction of Euclid:

Definition 13. Kg∗(a, b; c, d)↔ (Ex)(Ey)(Ez)(Is(x, a; c) & Bt(y; a, x) &

Bt(z; c, x) & Is(a; b, y) & Is(c; d, z) & Is(x; y, z)).
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(For Is either Is1 or Is2 can be taken.)

One surely can not demand from an axiomatic system like the one de-

scribed here, in which the collinearity and the betweenness relation are cou-

pled with orthogonality, that it provides a derivation of the axioms of linear-

ity. Moreover the formulation is limited from the outset to plane geometry,

since the definition of collinearity is not applicable in the multi-dimensional

case. The restriction to Euclidean geometry is also introduced at an early

stage. On the other hand this axiomatization may be particularly suited

to showing the great simplicity and elegance of the lawfulness of Euclidean

plane geometry.
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