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HILBERT, DAVID (1862-1943), German mathematician, was born in

Königsberg and, except for a semester at Heidelberg, did his university stud-

ies there. His dissertation, presented in 1884, was on a problem in the the-

ory of algebraic invariants, and it was to this theory that Hilbert devoted

his mathematical researches until l892. Through these penetrating investi-

gations Hilbert obtains many pregnant results, some of them (Hilbertscher

Nullstellensatz, Hilbertscher Irreduzibilitätssatz ) still know by his name. The

methods he used in these investigations inaugurated a trend toward treating

algebra more conceptually and have since become dominant in the field.

In 1886 Hilbert became a Privatdozent and in 1892 an extraordinary pro-

fessor at the University of Königsberg. In 1893 he was named by the minister

of culture Friedrich Althoff to succeed his teacher, Felix Lindemann, as an
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ordinary professor at Königsberg. In 1895 Hilbert accepted an invitation

initiated by Felix Klein, to the University of Göttingen to succeed Heinrich

Weber. Hilbert remained in Göttingen, despite many offers of other chairs,

notably from Leipzig in 1898, Berlin in 1902, and Heidelberg in 1904. The

invitation from Berlin led to Hilbert’s obtaining, through the help of Althoff,

a chair at Göttingen for Hermann Minkowski, whom Hilbert had known since

they were students at Königsberg. The personal intercourse between the two

investigators was highly stimulating to both men but was prematurely ended,

to Hilbert’s grief, by Minkowski’s death in 1909.

Hilbert’s most important mathematical investigations were carried out

between 1892 and 1909. He simplified the existing transcendence proofs for

the numbers e and π. His investigations in the theory of algebraic num-

ber field in particular his monumental report “Die Theorie der algebraischen

Zahlkörper” (1897), greatly amplified existing theory and directed further re-

search in the field. His famous Grundlagen der Geometrie is discussed below.

He showed the possibility of directly supporting the Dirichlet principle, that

the existence of a conformal mapping may be inferred from the presumed

existence of a minimum of a certain integral (which Bernhard Riemann had

taken as the basis for his general theorems concerning conformal mappings),

by means of an existence proof. This method for giving an existence proof,

when worked out by Richard Courant and Hermann Weyl, proved very suc-

cessful. Hilbert’s contributions to the calculus of variations, in particular his

statement of the Unabhängigkeitsatz (“independence axiom”), constituted an

illuminating commentary on Adolf Kneser’s textbook in the field. He contin-

ued the theory of Ivar Fredholm concerning integral equations. In particular,
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he introduced the analysis of infinitely many variables and generalized the

transformation to principal axes. The theory thus established has proved

highly fruitful in topology and in physics, particularly in quantum mechan-

ics. Utilizing a result of Adolf Hurwitz, Hilbert solved the Waring problem

concerning the representation of natural numbers by sums of nth powers.

Hilbert’s familiarity with the various domains of mathematics was im-

pressively demonstrated by the address “Mathematische Probleme,” which

he presented at the Second International Congress of Mathematicians in Paris

in 1900. In this address Hilbert surveyed the situation then ‖497 existing in

mathematics, at the same time formulating 23 problems which have much

occupied mathematicians since then. A great many of these problems have

been solved in the meantime.

After Minkowski’s death Hilbert turned to problems of theoretical physics.

He first applied the theory of integral equations to the kinetic theory of gases

and to the theory of radiation. Immediately after the appearance of Ein-

stein’s general theory of relativity, Hilbert published “Die Grundlagen der

Physik” (1915-1916), which offered the first proposal of a way to unify grav-

itational theory and electrodynamics.

After 1916 Hilbert returned to the problems of the foundations of math-

ematics. These investigations led to the development of proof theory, which

will be discussed below.

In his later years Hilbert gave lectures providing careful general surveys

of mathematics, such as “Anschauliche Geometrie” (On intuitive geometry),

as well as popular philosophical lectures. The spirit of these philosophical

lectures can be seen in the speech “Naturerkennen und Logik,” which he gave
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at the congress of natural scientists in Königsberg in 1930. At this congress

his native city named him an honorary citizen.

Hilbert’s character was not that of a specialized scientist. He took plea-

sure in the joy of life, especially in sociability, and also took a vivid interest

in political events. He enjoyed the exchange of ideas both in science and in

general thought; in discussions he had a predilection for pregnant, sometimes

paradoxical, formulations.

Hilbert had a great many pupils, and he was the adviser on many famous

dissertations whose themes were suggested by his investigations. He had the

satisfaction of seeing his work highly appreciated in his own lifetime.

The memory of Hilbert’s personality is vivid in all those who knew him,

and the impulses he gave to science are still effective in the research of today.

The foundations of geometry

In Hilbert’s scientific work, his studies in the foundations of mathematics con-

stitute an important part. These investigations fall into two stages separated

by an interval of nearly 13 years. The first period, which extends from about

1893 to 1904, embraces Hilbert’s inquiries into geometric axiomatics and is

highlighted by the publication of the Grundlagen der Geometrie (1899), the

work that made Hilbert’s name familiar to a wide public of scientists and

philosophers. The second period, which began with the publication in 1917

of “Axiomatisches Denken,” centers on the foundations of arithmetic and the

development of Hilbert’s program for proof theory.
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Abstract axiomatics. A main feature of Hilbert’s axiomatization of ge-

ometry is that the axiomatic method is presented and practiced in the spirit of

the abstract conception of axiomatics that arose at the end of the nineteenth

century and which has been generally adopted in modern mathematics. It

consists in abstracting from the intuitive meaning of the terms for the kinds

of primitive objects (individuals) and for the fundamental relations and in

understanding the assertions (theorems) of the axiomatized theory in a hypo-

thetical sense, that is, as holding true for any interpretation or determination

of the kinds of individuals and of the fundamental relations for which the ax-

ioms are satisfied. Thus, an axiom system is regarded not as a system of

statements about a subject matter but as a system of conditions for what

might be called a relational structure. Such a relational structure is taken

as the immediate object of the axiomatic theory; its application to a kind of

intuitive object or to a domain of natural science is to be made by means of

an interpretation of the individuals and relations in accordance with which

the axioms are found to be satisfied.

This conception of axiomatics, of which Hilbert was one of the first advo-

cates (and certainly the most influential), has its roots in Euclid’s Elements,

in which logical reasoning on the basis of axioms is used not merely as a

means of assisting intuition in the study of spatial figures; rather, logical

dependencies are considered for their own sake, and it is insisted that in

reasoning we should rely only on those properties of a figure that either are

explicitly assumed or follow logically from the assumptions and axioms. This

program was not strictly adhered to in all parts of the Elements, nor could

it have been, for its system of axioms was not sufficient for the purpose. The
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first axiom system meeting the requirements of the program was given by

Moritz Pasch in his Vorlesungen über neuere Geometrie (Leipzig, 1882).

This abstract kind of axiomatics, which consists in separating out the

purely mathematical aspects of a theory, is not the only possible one. Hilbert

himself knew that it can be applied advantageously only in domains of sci-

ence whose theoretical development is sufficiently advanced. But abstract

axiomatics is useful wherever the logical dependence or independence of the-

oretical assumptions is under investigation.

The distinguishing property of Hilbert’s axiomatics is frequently described

by saying that in it the terms for the kinds of elements (points, straight lines)

and for the relations (incidence, betweenness, congruence) are implicitly de-

fined by the axioms. This expression, first introduced in 1818 by J. D. Ger-

gonne (Hilbert did not employ it), is often used in a misleading way. The

axioms generally impose conditions on the relations and on the kinds of el-

ements of the system; some of these conditions are partial characterizations

of the relations or the kinds of elements, others characterize the space with

respect to the elements and relations. The entire axiom system—as Hilbert

observed in a letter to Gottlob Frege—can be regarded as a single definition.

But this is an explicit definition of a term denoting the relational structure

in question. The defined concept is a predicate of the second type (zweiter

Stufe, as Frege called it), applying to domains of things and to certain rela-

tions between them.

Non-Archimedean systems. Another main feature of Hilbert’s Grund-

lagen der Geometrie is the development of geometry, and, in particular, of
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plane geometry, independently of the Archimedean axiom. This axiom states

that given any two line segments, either may be exceeded by an entire mul-

tiple of the other. Thus, it partly compensates for the absence of general

commensurability of line segments. It was with the help of this axiom that

the theory of ‖498 proportions was established in Book V of Euclid’s Ele-

ments (attributed to Eudoxus). It is also a consequence of this axiom that,

once a unit segment is chosen, there corresponds to any line segment a real

number (in Richard Dedekind’s sense of the term) that is its measure (ratio

number); therefore, Hilbert also called the Archimedean axiom the axiom of

measurement.

Recourse to the Archimedean axiom introduced an arithmetical element

into reasoning, and hence avoidance of it in geometrical proofs amounts to

an emancipation from a nongeometrical type of reasoning. The avoidance of

nongeometrical reasoning does not preclude an analytic geometry. In fact,

Hilbert was able to construct a calculus of line segments, independent of the

Archimedean axiom, in two different ways.

One method operates within the framework of metric plane geometry. It

is based on the axioms of incidence (for the plane), those of order, those of

congruence, and the parallel axiom. Hilbert defines the sum of segments in

the usual way and the product of segments, after establishing a unit segment,

by a parallel construction; he then shows that by these definitions the usual

computation laws for sum and product are satisfied.

By this segment calculus an elementary foundation of the theory of pro-

portions and thereby also of analytic geometry is obtained. Hilbert further

showed how with the aid of the segment calculus the theory of the areas of
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polygons can be set up without supposing, as is assumed in Euclid, that to

any polygon there corresponds its area as a quantity, i.e., in agreement with

Euclid’s axioms of quantities. Thus he showed that no accessory reliance on

intuition is required for the theory of areas of polygons.

Hilbert conjectured that the theory of the volumes of polyhedrons is not

fully analogous to the theory of the areas of polygons. He posed the problem

of showing that tetrahedrons of equal volume cannot always be obtained from

one another by a series of processes of pairwise additions and subtractions of

congruent polyhedrons, a problem solved by Max Dehn (“Über raumgleiche

Polyeder” and “Über den Rauminhalt”). Various investigations have derived

from this problem.

Hilbert’s second calculus of line segments independent of the Archimedean

axiom is for affine geometry of the plane. A difficulty here is that the axioms

of plane affine geometry do not suffice for the foundation of this geometry.

The same holds for plane projective geometry.

Hans Wiener stated at the Naturforscherversammlung in Halle (1891)

that it is impossible to give autonomous foundations to both plane projective

geometry and plane affine geometry by adjoining to the axioms of incidence

the Desargues theorem and a specialized form of the Pascal theorem on

conic sections (with the conic section degenerated to a pair of straight lines).

Hilbert was impressed by these statements and gave a proof of them for

affine geometry by means of a calculus of segments. Here sum and product

of segments are defined by elementary parallel constructions, and, with the

aid of the Desargues theorem, the computation laws, with the exception of

the commutative law for the product, are proved to be satisfied. These proofs
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were simplified by Arnold Schmidt in the seventh edition of the Grundlagen.

This calculus of segments leads to an analytic geometry over a skewfield—

as it is called today—for the plane. This geometry can be extended, as

Hilbert showed, to an analytic geometry of three-dimensional space satisfying

the incidence axioms and the parallel axiom for the space. This is the extent

of the role of the Desargues theorem. The specialized Pascal theorem is

needed to prove that the segment calculus satisfies the commutative law for

multiplication. This law, as Hilbert showed, can be inferred from the other

computation laws and the laws of order with the aid of the Archimedean

axiom, but not without it. (Gerhard Hessenberg proved, somewhat later, that

the Desargues theorem is a consequence of the specialized Pascal theorem.)

Hilbert’s positive treatment of the Archimedean axiom and, in particular,

the question of its independence complemented his elimination of it from the

foundations of geometry, The possibility of a non-Archimedean geometry

was first considered in detail by Giuseppe Veronese in his Fondamenti di

Geometria (Padua, 1891). This possibility can be inferred, by the methods

of analytic geometry, from the existence of a (generalized) number system for

which the operations of sum and product and their inverses, as well as the

operation
√

1 + a2 and the relation “smaller than,” can be defined in such

a way that the familiar computation laws, but not the Archimedean axiom,

are satisfied.

Hilbert gave as an instance of such a non-Archimedean system a system

whose elements are algebraic functions of an argument t. But the instance

he presented in “Über den Satz von der Gleichheit der Basiswinkel im gleich-

schenkligen Dreieck” is easier to operate with. (This essay is one of a series of
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studies closely connected with the Grundlagen and added to it as appendixes

in the second and later editions; this essay forms Appendix II.) It deals with

the possibility of restricting, in plane geometry, the last congruence axiom

concerning triangles to the case of triangles assigned to one another in equal

orientation. The effect of this restriction is to admit as congruences only

those transformations obtained by translations and plane rotations, thus ex-

cluding symmetry from the notion of congruence. Two kinds of questions

arise, those concerning the anomalies which can occur in a model of the re-

stricted axiom system and those relating to the ways of compensating for

the weakening of the triangle congruence axiom. Many anomalies are stated

by Hilbert to occur in two models which he ingeniously constructed. Con-

cerning different methods of compensating for the restriction of the triangle

congruence axiom, see Supplement V2 of the ninth edition of the Grundlagen

(pp. 264-268) and the literature mentioned there in the footnote on p. 265.

Characterization of the plane. As Blumenthal’s biography indicates,

Hilbert was led to the problems of Appendix II by investigations (reprinted in

Appendix IV) in which he gave a very different foundation for plane geometry

from that presented in the main part of the book. The problem here is to

characterize the plane by means of the properties of the manifold of congruent

motions. It was first treated by Hermann von Helmholtz and soon after by

Sophus Lie, who emphasized its group-theoretic aspects. Both Helmholtz and

Lie proceeded by the methods of the differential calculus. Hilbert sought to

avoid any assumption ‖499 concerning differentiability. His arguments in

Appendix IV are within the framework of the theory of point sets. They rely
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especially on Camille Jordan’s theorem concerning simply closed continuous

curves (Jordan curves) in the “number plane,” which generalizes the theorem

on the decomposition of the plane by a simple polygon. Hilbert starts from

a characterization of the geometric plane as a two-dimensional manifold by

means of the concept of neighborhoods introduced in an axiomatic way—this

is now a familiar method in topology, but at that time it was scarcely known

at all.

Two characterizations of the “plane” are offered. According to the nar-

rower definition the plane is topologically equivalent to a connected domain

in the number plane; according to the wider definition it is locally equivalent

(homeomorphic) to the interior of a Jordan curve and is globally connected.

Hilbert chose the narrower characterization for simplicity.

The concept of continuous transformation can be defined by means of the

representation of the geometric plane in the number plane. The motions are

then taken as special continuous one-to-one transformations of the geometric

plane onto itself such that in the representation each Jordan curve preserves

its orientation. This provisional characterization of the geometric plane is

then completed by three axioms on motions: (1) The motions constitute a

group with respect to their composition; (2) given two different points, A

and B, there are infinitely many points into which B can be transformed by

a motion keeping A fixed; (3) if A,B,C and A′, B′, C ′ are triples of points in

the geometric plane (the members of a triple not necessarily being different)

and if in an arbitrary proximity of A,B,C there exist triples P,Q,R and in an

arbitrary proximity of A′, B′, C ′ there exist triples P ′, Q′, R′ such that P,Q,R

is transformed by a motion into F ′, Q′, R′, then A,B,C is transformed by a
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motion into A′, B′, C ′.

In a valuable discussion that made use of set-theoretic, topological, and

group-theoretic arguments, Hilbert proved that from these axioms, with the

obvious definition of congruence by means of the concept of motion and a

suitable set-theoretic definition of straight line, it follows that the geometric

plane under consideration satisfies the axioms of plane geometry as stated

in the main part of the Grundlagen, with two exceptions: (1) the triangle

congruence axiom is obtained only in the restricted form relating to motions,

and (2) the parallel axiom does not result. Two possibilities then remain: the

plane satisfies either Euclidean geometry or Bolyai-Lobachevski geometry.

Hilbert’s handling of these problems disclosed a new direction of investi-

gation, which is still being pursued. His results have been extended in three

ways: (1) by weakening the topological assumptions through the adoption of

the wider characterization, mentioned above, of a two-dimensional manifold,

(2) by generalizing the discussion to higher dimensions, and (3) by modifying

the axioms on the motions. (See the surveys of these researches in the intro-

duction to Freudenthal’s “Neuere Fassung des Riemann-Helmholz-Lieschen

Raumproblems” and his “Im Urkreis der sogenannten Raumprobleme.”)

Continuity. A final aspect of Hilbert’s axiomatization of geometry in the

Grundlagen is his treatment of continuity. The Archimedean axiom is stated

as an axiom of continuity, yet it excludes only a particular kind of disconti-

nuity. In fact, if this axiom alone is added to the Hilbert axioms of incidence,

order, and congruence (including the parallel axiom), then the axiom system

is satisfied by an analytic geometry constructed over a restricted number sys-
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tem consisting only of algebraic numbers and not including the square root

of each positive number.

In this respect Hilbert’s axioms differ from those of Euclid’s Elements.

Euclid explicitly postulated the construction of a circle around a given point

with a given radius (and implicitly made assumptions about the intersection

of circles and of circles with straight lines). However, in order to realize by

constructions the existence statements of Hilbert’s axioms, it is sufficient to

have, in addition to a ruler, not a compass but an “Eichmass”—that is, an

instrument for determining a given distance on a given straight line from a

given point in a prescribed direction. Hilbert showed, in Chapter 7 of the

Grundlagen, that the Eichmass and the ruler allow us to perform all the

constructions corresponding to the existence axioms.

Chapter 7 also discusses the question of the analytical representation of

the constructions with ruler and Eichmass. It turns out that the ratio num-

bers of line segments constructible from a given unit length with ruler and

Eichmass are the real numbers obtainable by the elementary arithmetical

operations together with the operation
√

1 + c2. This domain of numbers is

narrower than that obtained when the operation
√

1 + c2 is replaced by that

of extracting the square root of an arbitrary positive number. The latter do-

main is the one composed of the ratio numbers of the lengths constructible

by ruler and compass, but by no means does it contain all algebraic numbers.

Yet, whereas the set of all algebraic numbers is denumerable, the set of all

ratio numbers has a higher infinity. Hence, in order to characterize the geo-

metric continuum a further axiom is required. It then becomes apparent that

geometric continuity is related to continuity in the theory of real numbers.
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When Hilbert wrote the Grundlagen the question of conceptually for-

mulating the continuity property of an ordered set had been settled by the

Dedekind axiom of Lückenlosigkeit and its equivalent, the principle of the

least upper bound. For a metrical set, each of these axioms implies the

Archimedean property.

Completeness. In direct connection with his work on the foundations of

geometry, Hilbert undertook an axiomatization of theory of real numbers. In

the paper “Über den Zahlbegriff” (published in 1900 and reprinted as Ap-

pendix VI of the Grundlagen), he presents an axiom system characterizing

the system of real numbers as an ordered Archimedean field that cannot be

extended to a wider ordered Archimedean field. He thus replaced the conti-

nuity axiom by (1) the Archimedean axiom and (2) a condition of maximality

which he called the axiom of completeness.

Hilbert introduced into geometry a corresponding axiom of complete-

ness (which first appears in the second edition of the Grundlagen) stating

that the space characterized by the axiom system including the axiom of

completeness constitutes a maximal (that is, not extensible) model of the

other axioms. The connection between the geometrical and ‖500 the arith-

metical completeness axiom is given by the circumstance that any model of

the axioms of incidence, order, and congruence and of the parallel and the

Archimedean axiom can be represented by an analytic geometry over an or-

dered Archimedean number field, which again is isomorphic with respect to

sum, product, and order to a subfield of the field of all real numbers.

The statement of the completeness axiom is very suggestive, and it was
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with Hilbert’s introduction of this axiom that the notion of a maximal model

was first conceived. Yet, because of its reference to other axioms, the com-

pleteness axiom offers difficulties, particularly with respect to questions of

independence. The possibility of decomposing the full continuity axiom into

the Archimedean axiom and another axiom which does not entail it is given

by Cantor’s continuity axiom. (See Federigo Enriques, “Prinzipien der Ge-

ometrie,” and Richard Baldus, “Zur Axiomatik der Geometrie III: Über das

Archimedische und das Cantorsche Axiom.”)

Consistency. In “Über den Zahlbegriff” Hilbert recommended substitut-

ing an axiomatic presentation of the theory of real numbers for the “genetic”

method of treating them. Despite the great pedagogical value of the genetic

method, he said, the axiomatic method is to be preferred for the definitive

formulation and logical precision of the theory.

This point of view has decisive consequences for the problem of consis-

tency. Hilbert proved the consistency of the geometrical axiom system by

using the arithmetical model provided by analytic geometry. But if arith-

metic is set up as an axiomatic theory, then Hilbert’s proof establishes only a

relative consistency. This, of course, is a valuable result, since the structure

described by the axioms for the arithmetical continuum is much simpler than

that of Euclidean space. The reduction to arithmetic, how ever, cannot then

be regarded as a kind of direct verification by intuitive evidence, for the task

of proving the consistency of the axiomatic theory of real numbers remains.

This problem was one of those Hilbert posed in “Mathematische Probleme”

(Gesammelte Abhandlungen, Vol. III, pp. 290-329).
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At that time Hilbert thought that a suitable modification of the methods

of Dedekind and Weierstrass in the theory of irrational numbers would suffice

to obtain the desired proof of consistency. Not long after, however, in the

address “Über die Grundlagen der Logik und der Arithmetik” to the Hei-

delberg Congress of Mathematicians, Hilbert presented an essentially altered

view. This alteration was no doubt brought about through the discovery by

Russell and Zermelo of very significant forms of the logical paradoxes which

gave a more fundamental aspect to the difficulties that Cantor had earlier

found with respect to “inconsistent sets.” These difficulties showed that in

set theory we cannot in general assign to a predicate P “the set of all those

things for which P holds” as an object belonging to the universe of discourse.

Hilbert stated that these paradoxes seemed to show that the views and

methods of logic “conceived in the traditional sense” (“im hergebrachten

Sinne aufgefasst”) are not equal to the strong requirements of set theory.

And, although he strongly opposed Leopold Kronecker’s tendency to restrict

mathematical methods, he nevertheless admitted that Kronecker’s criticism

of the usual way of dealing with the infinite was partly justified.

The resulting point of view was not yet explicitly developed in Hilbert’s

Heidelberg address. However, Hilbert presented there the following pro-

grammatic ideas: (1) One must include in the arithmetical theory whose

consistency is to be demonstrated the methods of logical reasoning used in

the theory; (2) the methods of symbolic logic for representing mathemati-

cal sentences by formulas are to be applied; (3) the sequences of formulas

representing mathematical proofs can be made the object of intuitive ele-

mentary reasoning regarding their structural properties and relations, and in
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this way proofs of consistency can be carried out. Various devices for proving

consistency were also exhibited.

Hilbert’s investigations of the foundations of arithmetic remained in this

provisional state for a long time. During the interval major developments

took place in the foundations of mathematics and in mathematical logic. Zer-

melo proved the well-ordering theorem and published his axiom system for

set theory in 1908. Two years later the first volume of Russell and White-

head’s Principia Mathematica appeared. Julius König attempted to carry

out Hilbert’s plan, but his work was interrupted by his premature death

and appeared only in fragmentary form, edited by his son, in 1914 (Neue

Grundlagen der Logik, Arithmetik und Mengenlehre, Leipzig, 1914). In this

work some steps of the later Hilbert proof theory are already carried out,

but Hilbert did not know of it when he again took up his investigation of the

foundations of arithmetic.

Proof theory

Hilbert’s return to the problem of the foundations of arithmetic was an-

nounced by his delivery at Zurich in 1917 of the lecture “Axiomatisches

Denken.” In the latter part of this lecture he pointed out several epistemo-

logical questions which, as he said, are connected with that of the consistency

of number theory and set theory: the problem of the solubility in principle

of every mathematical question; that of finding a standard of simplicity for

mathematical proofs; that of the relation of contents and formalism in math-

ematics; and that of the decidability of a mathematical question by a finite
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procedure. Questions of this kind, he observed, seem to constitute a domain

that should be investigated, and to carry out this investigation it will be

necessary to inquire into the concept of mathematical proof. The general

idea and the aims of proof theory were thus proclaimed, but the means of

investigation were not thereby fixed, for indeed the theory was not to rely on

the current mathematical methods.

At the time of his Zurich lecture Hilbert tended to restrict the methods

of proof-theoretic reasoning to the most primitive evidence. The apparent

needs of proof theory induced him to adopt successively those suppositions

which constitute what he then called the “finite Einstellung.”

Consistency. In his first publication on proof theory “Neubegründung der

Mathematik, Erste Mitteilung,” Hilbert explains how number theory can be

treated in a ‖501 finitist way, whereas mathematics in general transcends

finitist methods. But, Hilbert argues, we can regain an elementary kind of

mathematical objectivity by formalizing the statements and proofs, using the

methods of symbolic logic, and by taking the representing formulas and proofs

directly as objects. In the same paper Hilbert also gives indications of the

nature of formalization and presents an instance of a proof of consistency—as

yet for only a very restricted system.

A more advanced stage is reached in Hilbert’s lecture at the Leipzig

congress of the Deutsche Naturforscher Gesellschaft in 1922, “Die logische

Grundlagen der Mathematik.”

In this speech the method is presented of dealing in proof theory with the

logical forms of generality and existence (quantifiers) by means of a logical

18



choice function which assigns to any predicate A an object τA for which A

holds only if it is generally satisfied. This idea is formally expressed by the

“transfinite axiom,” A(τA) → A(a), in which a predicate expression can be

substituted for A and any term representing an individual can be substituted

for a. A slight modification, soon applied, replaced the function τA by the

function εA, dual to it, whose axiom is A(a)→ A(εA).

By means of the choice function the quantifiers can be eliminated from a

formalized proof in such a way that the rules for the use of “all” and “exists”

are reduced to applications of the transfinite axiom, so that the explicit

logical structure of the proof becomes transformed into an elementary one,

consisting only in applications of the propositional calculus and substitutions.

The task of proving the consistency of a formalized domain of arith-

metic is thus essentially reduced. This task—in virtue of the law “ex falso

quodlibet”—amounts to showing that the formula 0 6= 0 cannot be derived in

the domain; in other words, to showing that in any formal derivation of the

formalized domain having a numerical end formula, this end formula differs

from the formula 0 6= 0. Consideration of formalized proofs can now be re-

stricted to those obtained by the transformation using the function εA. The

main problem is then to eliminate the formulas resulting from the transfinite

axiom by substitution (the “critical formulas”).

The method that Hilbert indicates for attacking this problem consists—

after first removing the free variables, which is possible—of a sequence of

steps. In each step the terms that occur are replaced by numerical values.

Then, either all critical formulas turn into true numerical formulas, and the

attempted elimination is effected, or the result of the step determines a next
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step. It must still be shown that the process has an end, and this, at least

in the simple cases, can be seen to hold.

This method is not in principle restricted to cases where the predicates to

which the logical choice function applies are number predicates and where the

individuals are therefore natural numbers; it can also be used for individuals

of higher types. The particular case in which number functions are taken as

individuals is essential to the formalization of the theory of real numbers. In

the Leipzig lecture, Hilbert gave several indications of how this formalization

can be performed; in particular, he showed how some form of the Zermelo

choice principle (used in the theory of functions of real numbers) can be

derived from the transfinite axiom related to the type of real numbers (as

individuals).

Thus, it seemed that carrying out proof theory was only a question of

mathematical technique. Such an expectation, however, turned out to be

illusory. An indication was that the first substantial consistency proof fol-

lowing Hilbert’s scheme of reasoning by Wilhelm Ackermann (in his thesis,

“Begründung des ‘tertium non datur’ mittels der Hilbertschen Theorie der

Widerspruchsfreiheit”) required an essential restriction of the formal system

not envisaged in the original plan. Similarly, in John von Neumann’s in-

quiry “Zur Hilbertschen Beweistheorie,” where a formal system for the logic

of first and second order (including the first four Peano axioms) was set up

and a consistency proof using Hilbert’s method was given, the consistency

proof did not apply to the full system but excluded the comprehension ax-

iom, which provides the manipulation of substitutions for variables of second

type. Thus, two highly able investigators did not succeed in obtaining a con-
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sistency proof for a formal system of the theory of real numbers by means

of the above-mentioned Hilbert method (connected with the logical choice

function) of eliminating the critical formulas.

A second method of eliminating the critical formulas, devised by Hilbert

and elaborated by Ackermann, yields the proof of a general theorem which

states that any axiomatic system, formalized within the frame of standard

logic (that is, propositional logic and the rules governing quantifiers), whose

axioms have a finitist interpretation is consistent (see Hilbert and Bernays,

Grundlagen der Mathematik, Vol. II, Sec. 1, esp. pp. 18-38). The method

is one of the easiest for proving an important theorem of mathematical logic

(first stated by Jacques Herbrand in his doctoral dissertation) which yields a

kind of normal form for derivations in pure logic and which also can be applied

to decision problems. But this method is not sufficient to demonstrate the

consistency of the proper formal system of number theory and therefore is

the less sufficient for the systems of infinitesimal analysis.

Completeness. Ackermann revised and simplified the proof presented in

his thesis. It was thought that by this modified proof and by that of von

Neumann the consistency of formalized number theory, at least, had been

proved. Such was the situation when Hilbert presented, at the International

Congress of Mathematicians in Bologna in 1928, his “Probleme der Grundle-

gung der Mathematik.” To the problem of proving consistency he here added

two problems of completeness: the problem of showing that every universally

valid logical schema is derivable by the rules of the predicate calculus and

the problem of showing the completeness of formalized number theory, in the
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sense that the formal system of number theory contains no formula which,

together with its negation, can be shown to be underivable in the system.

Gödel’s results. Kurt Gödel soon took up both these problems of com-

pleteness, but he stated completeness only for the case of the predicate cal-

culus (first-order functional calculus), whereas he proved the incompleteness

of formalized number theory even in the strong sense that ‖502 no strictly

formal system is possible in which each true number-theoretic proposition is

derivable. At the same time Gödel proved a theorem from which it follows

that a finitist proof of consistency for a formal system strong enough to for-

malize all finitist reasonings is impossible (“Über formale unentscheidbare

Sätze der Principia Mathematica und verwandte Systeme I”). Von Neumann

was convinced that this last condition holds for the formal system of num

ber theory, and hence he inferred that Gödel’s result implies the impossibility

of a finitist consistency proof not only for the broader systems discussed by

Gödel but even for the formal system of number theory.

To corroborate this inference he was able to show that in the proof of

consistency of the formal system of number theory by the elimination of

critical formulas, the demonstration that the process of elimination has an

end did not apply in full generality (see Hilbert and Bernays, Grundlagen,

Vol. II, pp. 123-125). It thus became clear that in two respects Hilbert’s

program demanded more than can be fulfilled: mathematical theories cannot

be formalized with full adequacy, and consistency proofs cannot be strictly

finitist in the essential cases.
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Broadening of proof theory. It soon became apparent that proof theory

could be fruitfully developed without fully keeping to the original program.

It was discovered that a proof of consistency for the formal system of number

theory, although not a finitist one, is possible by methods of proof admitted

by L. E. J. Brouwer’s intuitionism.

Arend Heyting, in two papers of 1930, set up a formal system of intu-

itionistic number theory. And, as Gödel and Gerhard Gentzen independently

observed, there is a relatively simple method of showing that any contradic-

tion derivable in the formal system of classical number theory would entail a

contradiction in Heyting’s system. Hence, from the consistency of Heyting’s

system the consistency of the classical system follows (Kurt Gödel, “Zur in-

tuitionistischen Arithmetik und Zahlentheorie”—Gentzen withdrew his own

paper, already in print, because of the appearance of Gödel’s paper).

In this way it appeared that intuitionistic reasoning is not identical with

finitist reasoning, contrary to the prevailing views at that time. In partic-

ular, intuitionistic reasoning deals with concepts not admitted as methods

in finitist proofs, such as the quite general concept of consequence when it

is not delimited by any rules of proof. It thus became apparent that the

“finite Standpunkt” is not the only alternative to classical ways of reasoning

and is not necessarily implied by the idea of proof theory. An enlarging of

the methods of proof theory was therefore suggested: instead of a restriction

to finitist methods of reasoning, it was required only that the arguments be

of a constructive character, allowing us to deal with more general forms of

inference.

By this modification of the program, various proofs of consistency for the
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formal system of number theory were obtained, the first by Gentzen (“Die

Widerspruchsfreiheit der reinen Zahlentheorie,” “Die gegenwärtige Lage in

der mathematischen Grundlagenforschung,” and ”Neue Fassung des Wider-

spruchsfreiheitsbeweises für die reine Zahlentheorie”). Ackermann was then

able to complete the consistency proof proceeding by the method of elimi-

nating the critical formulas (“Zur Widerspruchsfreiheit der Zahlentheorie”).

The broadened methods also permitted a loosening of the requirements of for-

malizing. One step in this direction, made by Hilbert himself, was to replace

the schema of complete induction by the stronger rule later called infinite

induction (“Die Grundlegung der elementaren Zahlenlehre” and “Beweis des

Tertium non datur”).

However, going beyond finitist methods is not generally required in proof

theory; many important results have been obtained by finitist methods, re-

sults concerning the following topics: pure logic, the combinatorial calculus.

completeness (the completeness of a system of real algebra), undecidability,

and relative consistency.

One main result concerning relative consistency is connected with Hilbert’s

attempt at a positive solution of Cantor’s continuum problem in the paper

“Über das Unendliche.” The sketch of a proof given in this work contains

many detailed arguments, and it stimulated the study of recursive definitions.

As a whole, however, the sketch was fragmentary, and there were in principle

hindrances to its completion. Twelve years later Gödel connected the ideas

of Hilbert’s paper with the concepts of axiomatic set theory and proved the

consistency of Cantor’s continuum hypothesis in its generalized form on the

assumption that axiomatic set theory (without the axiom of choice) is con-
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sistent. (Nevertheless, this result, which is obtained by a powerful method of

proof, does not settle the continuum problem. In fact, from results obtained

by Paul Cohen it appears that axiomatic set theory, at least in its formal

delimitation, leaves this problem fully undecided.)

On the whole, Hilbert’s idea of making mathematical proof an object of

mathematical research by means of formalization has proved to be very fruit-

ful. And although Hilbert’s work in the foundations of arithmetic has not

had the effect he sought, “to remove once and for all the questions of founda-

tions in mathematics” (“die Grundlagenfragen in der Mathematik als solche

endgültig aus der Welt zu schaffen——”Die Grundlagen der Mathematik,”

p. 65, and “Die Grundlagen der elementaren Zahlenlehre,” p. 489), he did

establish proof theory as a valuable domain of mathematical investigation,

and thus Hilbert was a pioneer in the newer mathematical foundation theory,

as he was in many other fields of mathematics.
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