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Preface

This treatise exhibits certain important relationships that

exist between 3- and 4-note chords sharing  several intervals in

common. When present in a composition, these common intervals

are perceived as an "association" between those sonorities.

The structures that are elucidated   are so fundamental to

compositional technique, that it isn't necessary to give examples of

compositions illustrating their use.  It is important to emphasize

that this is not a theory of musical composition . either diatonic,

serial or 12-tone. Its relationship to musical composition may be

considered analogous to that of a treatise on the phonemes of

English to the writing of poetry.

Still, I  believe that the analysis presented here, which

generalizes techniques of suspension, anticipation, resolution,

constructing cadences, etc., traditional to diatonic music, will be

immediately perceived by composers as useful for their work.
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The only prerequisites are the ability to read music, a general

familiarity with the compositional techniques of European music,

and some knowledge of simple abstract algebra, such as groups

and modular arithmetic, in particular to the base 12.
❆❆❆❆❆❆❆❆❆❆❆❆
❆❆❆❆❆❆❆❆❆❆❆❆
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I. All-Interval Chords, Transpositions and

Group Theory

An "All-Interval Chord" is one whose relative interval

content includes all the intervals between the 12 notes of the

chromatic scale. For certain tetrachords each interval occurs once

and only once; obviously the tritone, though appearing twice,

must be deemed equivalent to its inversion. For the purposes of
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this treatise the phrase "all-interval chords" will mean these and no

others.  There are 4 distinct all-interval tetrachord sonorities:

Figure 1

A  useful structural property of these sonorities  : since every

interval is present in the interval content once and only once,

every transposition of a specific All-Interval Chord  ( save at the

tritone ), will have one and only one note   in common  with the

original chord. The tritone transposition preserves the two notes

of the tritone in the chord:

Figure 2

 The unique note held in common between the original and

the transposed chord may be called the intersection note  of the

two chords .
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There are no other  A.I. tetrachords; this will be

demonstrated in the final section. Label each note by the number

of semitones from C = 0 . In closed position, the chords are:

I = ( 0,4,6,7)

I* = ( 0,1,3,7) . This is the inversion   of I .

T  = ( 0,2,5,6 ) This is the "circle of 5ths  " translation of

I.

Multiply each number in the set (0,4,6,7) by 7 and take the residue

(mod 12)

T* = (0,1,4,6) . This is both the inversion of T  , and the

"circle of fifths" transformation of I* .

Mathematically, the All-Interval chords combine the maximal

"antigroups" (such as (4,6,7), with the identity (0), in the additive

modular group Z12 .

Letting:

Q represent the action of  inversion,

F the circle-of-fifths transformation

QF the result of applying both

 e the identity

these transformations form a simple group of 4 elements  acting on

the set of All-Interval Chords.

Q2 = F2 = e

QF = FQ
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Figure 3
A few observations :

(a) The A.I.  chords contain no "symmetric triads",(

such as  the augmented chord or the diminished or whole step

chord, or any sub-chord with two identical intervals in its

content.)

(b) The sonorities represented by the chords:

E = (0,4,5) and E* =  (0,1,5) are not sub-chords of any of the

all-interval chords. The combinatorial basis for this will be

examined later.

(c) Every other 3-note sonority may be found as

subchords in  one or another of the all-interval chords. There are

twelve of them all told:
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Figure 4

 One sees how  the All Interval chords can be employed to

unify the contrapuntal texture of music employing some or all of

the distinct 3-note sonorities derivable from the chromatic scale.

Observe that 8 of the 12 sonorities in the above chart are present

in only one of the 4 A.L. chords, and the remaining four present

in only two. The trichord sonorities can therefore be employed as

"signals" indicating the presence of a full tetrachord, in the same

way that the intervals of the 7th or tritone signal the presence of a

dominant seventh chord, or even of an entire key. For example, as

seen in Figure 4 , the major triad is uniquely associated with I, the

minor triad  with I*, etc.

❆❆❆❆❆❆❆❆❆❆❆❆
❆❆❆❆❆❆❆❆❆❆❆❆
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Fundamentals of Triadic Associative

Harmony

Definition:   Two  triads, or 3-tone sonorities, are associated   

or  related by association  if  two distinct ( non-inverted ) intervals

in their interval content are shared. Since the interval content of a

trichord consists of 3 intervals less than or equal to the tritone, this

means that associated chords differ by at most one interval ( less

than or equal to the tritone) . In Figure 5 we see  all the triads

associated with the C-major chord:

Figure 5

Although these chords are associated with (CEG ) = (0,4,7 ),

they are not necessarily associated with each other.  Musical

association  is not algebraically  associative   ! It is commutative

however , and certainly reflexive ( A chord is obviously associated

to itself) . Because of the lack  of associativity , "association"  is not

an equivalence relation, a good thing from the viewpoint of

musical composition as it makes possible the construction of

chains of associated chords moving through the entire catalogue of

trichords.

( With one exception: the trichord of the augmented third  , with a

single  interval in its interval content!   )

Obviously the major-minor association is an equivalence

relation, since major and minor forms of a given sonority always
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have exactly the same interval content. Counting the "symmetric"

chords ( excluding the chord of the augmented third)  the total

number of distinct trichord sonorities is 18 .  A progression going

through all of them by the principle of association might begin

like this:

Figure 6
❆❆❆❆❆❆❆❆❆❆❆❆

Starting with  a sequence  of simple intervals ( say minor

third and fifth), one can construct groups of chords associated

with them:

Figure 7

When this pair of dyads appears consecutively, or essentially

in sequence, our habits of listening to diatonic music have

induced the habit in us of interpreting both dyads as sub-intervals

of the same sonority, in this case the major or minor triad,

depending on context.
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So that, if we hear minor and major thirds, an interval of a 4th or

5th, etc., we will automatically place them in major or minor

diatonic triads depending on the key or the modulation between

keys, and so on. Hearing seconds, sevenths and tritones, our

musical imaginations conjure up seventh chords.

Using these two dyads as a base one  can derive  4

associated chords which incorporate both of them and  underlies

the passage from dyad 1 to dyad 2  as a sonority preserving

progression.

In the charts below this is worked out in detail for the

example of  Figure 7. The incorporation of the derived trichord

sonorities into the all interval chords is also shown

Figure 8

The same analysis is presented for a pair of dyads in contrary

motion, (a,c) to (g,d):

Figure 9

 As I and I* are the triads from which the diatonic system is

derived, one sees that, in a situation involving parallel motion, the

uniqueness of the triad is undermined, which may have
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something to do with the prohibition against parallel motion of

unisons, fourths and fifths.  Quite apart from its relationship to

the diatonic system, this phenomenon is based on certain special

combinatorial   properties of the major triad, which we will come

to presently.

We now allow the letter I to represent some arbitrary non-

symmetrical trichord sonority. All of the trichords associated to I

may be derived from the hexachord H which is generated by the 3

positions of I on  a fixed base. This is best illustrated by an

example.

Let I = (0,3,5) = (CEbF) . Keeping C as the  bottom note,

write down the 3 positions for I:

Figure 10

   The top and middle voices themselves will be called  '3-

forms' , and designated as V and V' respectively:

Figure 11

Take any pair of notes from V and set them against the bass

note C. Doing this in all possible ways one derives the  3
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associated chord, J, K, L . Likewise the notes of V' taken in pairs

will generate their minors,  J* K* and L*  .

Figure 12

 Generally speaking, take any trichord I = (0,a,b ) (Mod 12) . 

Then:

I' = 1st Inversion = (0, b-a, 12 -a)

I" = 2nd Inversion = ( 0. 12-b,  12 - b + a)

The 3-forms V and V' are therefore

V = ( b, 12-a , 12 - b + a )

V' = ( a, b-a , 12-b)

V and V' are inversions. Each V form is internally

symmetrical relative to the bass note in the following :  the sum of

all 3 notes adds up to 0 (mod 12):

b +12 − a +12 − b + a ≡ 0(mod12)
a + b − a +12 − b ≡ 0(mod12)

Therefore:

1. Given the first two notes of V and the root  note ( C

in the example) , one can derive the 3rd note. One can also derive

the form V'.

2. Given the generating chord I with root note C,  and

a V-form derived from the top notes of the 3 positions of I , then

the forms V+4 , and V+8 , transpositions up a major third and up a

minor sixth   will also be the V-forms of sonorities ( differing in

general from I)   on the same root note.
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Proof  : If  I = (0,a,b) , then V = (b, 12 - a , 12 +a-b ) , and

V* = V+ 4 = ( b+4 ,  16 -a , 16 +a-b) . Since

 b + 4 + 16 -a + 16 + a - b = 36 = 0 (mod 12)

V* is the V-form of the sonority I* =  (0, a+4 , b-4) ,

while   V** = ( b+8, 20-a, 20+a-b)  ( transposed to the appropriate

octave) is the V-form of the sonority I** = (0,a +4 , b-4)

We next show that the condition that the note values of a 3-

form  U =  (u,v, w)  add up to a multiple of 3 is necessary and

sufficient that U  be the V-form of some trichord sonority I.

If u+v+w = 3k  (mod 12) , transpose U down an interval k, to

obtain the 3-form  U' = (u',v',w') = ( u-k , v-k, w-k) . Without loss

of generality we can drop the accents  and assume that

u+v+w = 0 (mod 12)

Then, letting u = b , v = 12-a , one  obtains the generating

chord

I =  (0,a,b) = (0, 12-v, u)
❆❆❆❆❆❆❆❆❆❆❆❆

However, given the root note 0, and V-form (u,v,w), there

are only 3 transpositions, namely V, V* = V+4 and V** = V+8 , that

imply  trichord sonorities  I, I* and I** that generate them. Then

these combinations (I,V,V') , (I*,V*,V*') and (I**, V**, V**') will

generate complete sets of associated chords.

Figure 12

To show this we start with a V-form (b,12-a, 12+a-b)
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( from root "0") , and transpose it up an amount r which is not a

multiple of 4 . If

V + r = (b + r,12 − a + r,12 + r + a − b) , then

b + r +12 − a + r +12 + a − b ≡ 3r(mod12)

which is congruent to  0 only when r = 0, 4 or 8.

Observe that in practical terms what this means is that all the

trichord sonorities generating the same pair of V-forms V and V'

are obtained by fixing the root, dropping one of the remaining

notes a major third, and raising the other note by a major third.

Summary

(1) Given a trichord sonority I ( assuming, for

convenience sake that I is not symmetric, i.e. has no repeated

intervals in its interval content) , all of the trichord sonorities

associated with I and its minor I* are gotten by taking the notes of

the V-forms, V and V' in pairs against the root note.

(2)   Given a V form above a root note, with

sonority I,  then V+4 and V+8 are also V-forms above that root

note. The trichord sonorities associated with them are derivable

from I by lowering one of the non-root notes by a major third and

raising the other non-root note by a major third.

(3) Not every triple of notes is a V-form.
❆❆❆❆❆❆❆❆❆❆❆❆

The possible V-forms

Let I be a trichord sonority with root-note "0", I =(0,a,b)  .

We make the reasonable assumptions that
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(i) b > a > 0

(ii) I is in "closed form" , which means that 0 < b ≤8

The V-form is

(b,12 − a,12 + a − b) ≡ (b,−a, a − b)(mod12)

In the following table, the duplications b = a , b = -a , a-b = -

a, a-b = b

have been eliminated :

a= 1 , -a = 11 b = 2,3,4,5,6,7,8 a-b = 10,9,8,7

a=2, -a = 10 b = 3,4,5,6, 7, 8 a-b = 11, 9, 8

a= 3, -a = 9 b = 4, 5, 6, 7,8 a-b = 11, 10, 8

a=4 , -a =8 b = 5,6,7 a-b = 11, 10, 9

a= 5, -a = 7 b = 6 , 8 a-b = 10, 9

a= 6 , -a = 6 b = 7,8 a-b = 11, 10

a= 7, -a = 5 b = 8 a-b = 11

Table I

The distinct forms which are not transpositions  are :

V1 = (0,1, 5 ) = (CC#F)

V1*= (0,4,5) = (CEF)

V2 = (0,5, 7 ) = (CFG)  (   ≈ (CGD) )

V3 = (0, 3, 6) = (CEbF# )

V4 = (0,2,4  ) = (CDE)

V5 = (0,1,2) = (CC#D)

Theorem   : The V-forms are the symmetric trichords and the

major and minor forms of the exceptional chord E = (0,4,5) .  Proof

by inspection
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Corollary I :  With the exception of E, each V-form is

identical , (up to permutation)  to its minor  V = V' .

Corollary 2: The V-forms therefore, are precisely those

trichord sonorities which are not subchords of any of the all-

interval chords .

That this is more than a simple coincidence will become clear

in the ensuing discussion.

Figure 13

 Given a  symmetric V-form, what can be said about the

generator trichord sonorities from which it is derived?  Writing V

as (b , -a, a-b) , V will be symmetric when either :

(c1 ) b - (a-b) =  (a-b) +a ( mod 12) , or

(c2 ) b - (a-b) = -a -b ( mod 12)

The first condition is equivalent to

3a = 3b (mod 12)  or  (given that a = b  is

ruled out)

  b = a (+/-)4

The second condition reduces to

3b = 0 (mod 12), or b =  4  or 8 .
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If the V-form of I is a symmetric form. then I contains a

major third in its interval content . In fact,

Theorem :The trichords which generate symmetric V-forms

are precisely those which have a major third ( minor sixth, etc. ) in

their interval content.

Therefore, the exceptional forms E and E* are generated

by non-symmetric trichord sonorities which do not have a major

third in their interval content.

Figure 14
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Figure 15

Further Transpositional Properties of V-

forms and Roots

I. If an interval k be added to any note of a given V-form,

and that same amount subtracted from another note, the resulting

form will also be a V-form
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2. If an interval k be added to 2-notes of a V-form, and the

amount 2k subtracted from the third, the resulting form will again

be a V-form

3. If any note of V be raised a minor third ( k =+3) , and the

root R be moved up a semitone, the new form will be a V-form

over the new root.

These are all easily derivable by modular arithmetic. Briefly,

everything adds up to 0, modulo 12 !
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Figure 16
❆❆❆❆❆❆❆❆❆❆❆❆

Associational Techniques and Minor Forms

A few indications about the application of  symmetric

trichords in associative harmony:  If I is a trichord sonority, I* its

inversion, they will  have the same interval content. Consequently

the forms V* and V*' for I* will be permuted versions of  those for

I.

This suggests a  compositional technique utilizing both

symmetric and non-symmetric trichords one might  call

Combinatorial  Switching :
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Figure 17

In the above example, the forms V , V' , V* and V*' have

been drawn above and below their root notes of I = CEbF  and I*

= CDF respectively .

If one arbitrarily switches a lower note with an upper note,

the resultant 3-forms  will either be V-forms, or will generate

symmetric chords that are linked by association of 2-intervals to

the other chords derived from them. This is best illustrated by

example:

Figure 18
❆❆❆❆❆❆❆❆❆❆❆❆

Summary of Properties of Trichords and V-

forms

A. The forms V and V' of a trichord sonority I with root r=

"0", can generate the complete catalog of all sonorities associated to

I by taking their notes in pairs in combination with the root note.
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B. If intervals k,l,m are added to the notes of a V-form such

that

k+l+m = 0 (mod 12), the result will be a new V-form. In particular

if the numerical values of the notes  of one V-form are added in

sequence to those of another V-form, the result will be a third V-

form.

C. Transposition of a V-form by a major third produces a

new V form against the same root and a different sonority

D. The collection  of  V-forms consists of  those trichords

which are not sub-chords of any all interval chord.

E. Corresponding notes of V and V' , or V and V* , can be

switched to give other forms, more general that V-forms, which

generate associated chords, both symmetric and non-symmetric.

Figure 19
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❆❆❆❆❆❆❆❆❆❆❆❆
❆❆❆❆❆❆❆❆❆❆❆❆

The Chord Equation

Double Tonics

Invariant Dyads

For our present purposes we identify sonorities with

equivalence classes on the basis of:

(i) Octave equivalence

(ii) Transpositions

(iii) Positions ( a combination of ii and iii)

Fix some note  "0",  and label intervals by the number of

semitones from this root. Thereby one can identify any chord by

its "trope" of numbers C = (a,b,c,d ...) , modulo 12. The

equivalence conditions  can be restated as:

(i) For any note n , n ≈n+12

(ii) For any C, and integer k C ≈C+k

(iii) C is a trope, which means that

C= (a,b,c,d,...,h ) is equivalent to any rearrangement C'

All 3 conditions can be brought together as :

A = (a1,a2 ,...an ) ~ B = (b1,b2, ...,bn )

if there is some rearrangement of the a's

A' = (aj1 ,a j2 , ...,ajn ) = (a1
' ,a2

' , ....,an
' )

such that

ai
' − a1

' ≡ bi − b1(mod12)
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Problem :Given dyads (a,b) and (c,d) above a root note "0",

when is it possible to find a note x such that (x,a,b) and (x,c,d) are

transpositions of the same sonority, and how does one compute x ?

Such a note x will be called  an "implied tonic " .

Figure 20

 In the above example the dyads (a,b) and (d, eb ) are sub-

intervals of the same sonority ( c,a,b ) = ( c,d,eb ) . Likewise, (a,d)

and (b,d#) are sub-intervals of (bb, a, d) = (bb, b, d#) . For the

dyad pair (a,d# ) and  ( c,d ) their is no such bass note x , as one

can see through trial and error . The ability to find such a common

note  figures into the formation  of musical  suspensions   and

anticipations  in  associative harmony.

In terms of modular arithmetic one is being asked to solve

the equation (a,b,c and d are of course arbitrary "constants", not

the customary notes in the chromatic scale ) :

(x,a,b) = (x + k,c + k, d + k )(mod12)

 for unknowns x and k, for some rearrangement of x, a and b. We

call this the chord equation  .  If k = 0, c and d will be equal to  a

and b , or b and a  (mod 12) . This is the trivial case, so  one can

require that x and x +k be distinct.

x ≡ c + k;a ≡ x + k;b ≡ d + k(mod12)
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These modular equations can be solved in a straightforward

manner . The solutions depend on the relationship between a,b,c,

and d :

I.x ≡
a + c

2
;d − b ≡

c − a

2
(mod12)

II.x ≡ 6 +
a + c

2
;d − b ≡ 6 +

c − a

2
(mod12)

In both cases (c-a)/2 must be an integer, which implies that the

notes c and a must be separated by a certain number of whole

steps. It also means that the interval between the notes c and a is

double the interval between the notes d and b (modulo 12 ) .

Figure 21
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The above chart is based on the cross-matching of notes

according to the example given above. Usually the implied tonic is

unique, however it turns out that in certain cases it is possible to

compute 2 notes  , x and y, which can function as  implied tonics

of a  dyads (a,b) and (c,d)

To find these we start once more from the chord equation:

(x,a,b) = (x + k,c + k, d + k )(mod12)

This time we will look at all  possible ways in which the

notes of the left and right sides of the equation can be crossed

matched:

I.x1 ≡ c + k1;a ≡ d + k1;b ≡ x1 + k1
II.x

2
≡ c + k

2
;b ≡ d + k

2
;a ≡ x

2
+ k

2

III.x
3
≡ d + k

3
;a ≡ c + k

3
;b ≡ x

3
+ k

3

IV. x4 ≡ d + k4 ;a ≡ x4 + k4 ;b ≡ c + k4

From these  4 sets of 3 equations in 2 unknowns  we can

eliminate the k's . The equations in the x's  simplify to:

I.2x1 ≡ c + b;a − b ≡ d − x1
II.2x

2
≡ c + a;a − b = x

2
− d

III.2x
3
≡ d + b;a − b ≡ c − x

3

IV.2x4 ≡ d + a;a − b ≡ x4 − c

There are conditions on these equations: a and b must be

distinct, as must c and d. Also, none of the x's can equal any of

the notes a,b, c or d. Under these conditions it can be shown that

although there are 4 equations, there are only two solutions. Any

pair of equations can be solved, while the others will have either

no solution or solutions identical to these.
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For example, consider equations I and IV, with solutions x

and y. Write them as:

2x = c + b
d − x = a − b
2y = d + a
a − b = y − c

Eliminating x and y from this system one obtains the

relation:

c − b ≡ 4(c − b),or
3(c − b) ≡ 0(mod12)

Therefore, the interval between c and b must be 4 , that is to say, a

major third. The same relationship pertains to d and a.

Combining these restrictions with equations II and/or III,

one finds that a,b,c,d must all be separated by intervals of a major

third, which is impossible without at least two of them being

equal. If a is the same note as c, and  b is the same note as d (both

major thirds), then every   note is an implied tonic of that

progression !

There is one more possibility, namely:

a = C ; b = E ; c = E ; d = G#

Then there is no implied tonic. However the chords F#CE

and F#EG# are inversions. This situation may be treated by the

same methods that we have been using . The chart in Figure 22

depicts all those situations in which a "double root" may be found

beneath the sequence of a minor second followed by a major

third:
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Figure 22

These solutions can be strung together to form a cycle:

Figure 23 

In terms of  V- forms this is:
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Figure 24

One uncovers In the symmetries of the V and V' forms one

uncovers the structures underlying this cycle. Cycles can be

calculated for every sequence in which either the first or second

dyad is a major third and the other dyad is not an even number of

semitones.  Putting together all  cycles produces the grand cycle

which is depicted in Figure 25 :
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Figure 25

Table 2
The Associative Cycle of the Major Third

❆❆❆❆❆❆❆❆❆❆❆❆

Conclusion.
Exceptional Chords and Final Observations

The interval content of A. I. tetrachords is  unique. However

the association of trichords require that they have two non-

inverted intervals in common. These requirements taken together
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imply that none of the 3-note subchords of a single all-interval

chord can be associated.

Therefore none of the trichords contained in an all-interval

chord can be associated. Also, the sum of the numbers of their

notes cannot be a multiple of 3. The quickest way to prove this is

to try out the possible combinations for the chord I = (0,4,6,7) ,

then use the fact that I* has the same interval content, and J is

obtained from I through multiplication by 7 , a prime (mod 12) .

Since the sums of the numbers of the notes in a V form must

add up to a multiple of 3, it follows that the trichord sonorities

which are not subchords of all-interval chords are precisely those

whose notes add up to a multiple of 3, that is to say, the V-forms.

There is another way of exhibiting  these relationships which

may also be useful compositionally:

Let D1 , D2 , D3 represent the 3 diminished seventh chords:

  D1 = CEbF#A

   D2 = C#EGBb

   D3 =  DF#G#B

Choose a tritone from  any one of these chords, and one of

the minor thirds in another, then put them together as a

tetrachord. The result will always be an all-interval chord. The

proof is a simple exercise in modular arithmetic.
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Figure 26
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