Interactive Systems

And The

Design Of Virtuality

The Design of Interactive Systems,
Tomorrow’s Crucial Art Form, Rests
On New Philosophical Principles

Whart follows expresses the personal
views of the editor.

It should be plain by now to anyone’

that the future of mankind is at the
computer screen. Already hundreds of
thousands do their work at screens,
working with text or diagrams or maps.

This is only the beginning. and I think
it is obvious that virtually every form of
non-physical work, and many forms of
play and leisure study, will soon migrate to
the interactive computer display screen, as
suitable systems are designed.

Yet most interactive systems are
lousy; and almost every new interactive
system 1 see leaves me aghast.

In this article I will try to set forth very
briefly, with examples, what I conceive to
be the correct principles of design for
interactive systems. There is much more to
be said, at both concrete and theoretical
levels, but here for now is the brief
overview that is so sorely needed.

Interactive screens, as everyone
should know, can present anything — text,
pictures, maps, the latest information on
whatever you need to keep track of.

Real-world control from a screen
already occurs in some places. Systems are
installed or available for factories and
utility companies — and military forces —
that allow the user to modify the world at
the touch of a picture. By changing a
picture, the user can cause the real world to
change accordingly — if the system is so set
up. Change a valve in a diagram on the
screen, and the real valve itself, half a mile
away in the refinery, opens or closes.

The potential flexibility of such
systems is enormous. Any pointing tools
can be used to work in this fashion, if
suitably linked into the controlling
computer and its program. (You could
open that valve with a keyboard, a
joystick, a tablet, a trackball, a mouse — or

© 1980 T. Nelson. Trademarks cited are those of
the author.

Ted Nelson

any other mechanical hookup you might
prefer.)

Both laymen and computer people
mistakenly believe that the design of
interactive systems is somehow a “tech-
nical” matter. While there are many
technical aspects to such design. 1 believe
the conceptual and even artistic problems
of such design far outweigh in importance
the mere technical details. The designing
itself is art, not science at all. (Sometimes,
of course, there is a question of whether a
thing can actually be done, or how, in
which case technical questions loom large.)

PITFALLS

There are many design pitfalls in
attempting to build interactive systems.
Let us run by these quickly.

1. Cheap Al Systems

One approach that was popular five
or ten years ago was the “artificial intelli-
gence” approach, based loosely on the idea
that a user would type in English-like
sentences, and the program would pretend
to be alive, friendly and understanding in
responding to what you thought you asked
for. '

But the typing of input strings is
tedious and generally a waste of time.
Moreover, the program’s masquerading as
an intelligent entity is usually misleading
and annoying, both for the time wasted in
trying to guess what the program really
does, and for its gratuitous pseudo-social
invasion of contemplative privacy. For-
tunately, this type of system is propor-
tionally on the wane (except in the
personal computing field, where it lives on
as the “adventure,” or Guess-My-Com-
mands, game).

(Note that these criticisms are not
intended to apply to artificial intelligence
as a long-term goal, but only to artificial
intelligence as a local pretense of con-
temporary software.)

56

2. Command Languages

Another common approach is to
create a command language for what you
want to do — like, say, the “text editors” of
old. Each action must be called forth by
typing in an input string in code.

But user languages are hard for
beginners to learn, and have the “com-
puterish™ feel that is so repellent to non-
computer people.

Command-language systems are also
clumsy and obtuse compared to more
highly responsive design. (As one wide-
spread example, more highly interactive
forms of word processing have appeared,
supplanting the old text editor programs
that used to require (for instance) explicit
insertion commands.)

Command languages are also danger-
ous. By permitting many simultaneous
options (and variations, and modifications
of further variations), command languages
make it possible for things to go terribly
wrong in a very short time — terribly,
terribly wrong; irrecoverably wrong.
While language facilities must of course be
available to programmers, an environment
in which a user thinks about something
other than the computer should not be
tangled by the complications of a com-
mand language that forces his attention
where it does not belong.

3. Menus and Afterthought Interfaces

The last pitfall is what I call the menu
trap. Now, menus are allAright, and better
than the approaches I have mentioned so
far, but for high responsiveness and
performance values, I believe the kinds of
interactive systems we will describe below
are greatly preferable.

The so-called “user-friendly inter-
face” is a variation of the menu trap. The
very phrase suggests that the user interface
goes on after the system is actually built,
like paint. We will speak more about this
later.

CREATIVE COMPUTING

The Ten-Minute Rule

An interactive computer system for
most purposes should be learnable in
under ten minutes. This criterion shocks
many computer people.- It has certain
vaguenesses. But as a striking statement —
a battle cry — mandating high-power
interactive design, it is the most concise
way I know of saying how easy things
should be. They understand the ten-minute
rule in the arcades. They understand the
general idea of virtuality design in the
arcades. The people who don’t understand
are the “computer professionals” — who
sometimes do great damage.

VIRTUALITY

The central concern of interactive
system design is what I call a system’s
virtualiry. This is intended as a quite
general term, extending into all fields
where mind, effects and illusion are proper
issues.

By the virtuality of a thing [mean the
seeming of it, as distinct from its more
concrete ‘“reality,” which may not be
important.*

An interactive computer system is a
series of presentations intended to affect
the mind in a certain way, just like a movie.
This is not a casual analogy; this is the
central issue.

[use the term “virtual™ in its
traditional sense, an opposite of “real.”
The reality of a movie includes how the
scenery was painted and where the actors
were repositioned between shots, but who
cares? The virtuality of the movie is what
seems to be in it. The reality of an
interactive system includes its data
structure and what language it's program-
med in — but again, who cares? The
important concern is, what does it seem to
be?

A “virtuality,” then, is a structure of

seeming — the conceptual structure and
feel of what is created. What conceptual
environment are you in? [t is this
environment, and its response qualities
and feel. that master — not the irrelevant
“reality” of implementation details. And to
create this seeming, as an integrated whole,
is the true task of designing and imple-
menting the virtuality. This is as true fora
movie as for a word processor.

The virtuality of an interactive system
is composed of its conceptual structure and
its feel. A system should have both a good
conceptual structure and the right feel.

*The closest other term [can find is “mental environ-
ment.” My students have urged me to retain the term
“virtuality.” even though it causes confusion among
users of so-called “virtual svstems,™ meaning real
svatems contigured with virtual huge memory

NOVEMBER 1980

The truly interactive system, as in the
arcades, needs no carriage returns; each
user action creates an instant response —
and may not echo what you typed.

(It is amusing to note that the firm
most associated with “the computer” in the
public mind does not manufacture com-
puters which can be programmed in this
way. Yet I believe this is how computers
should in general be programmed.)

Here too we see an exact similarity of
the interactive system to the motion
picture. It is the overall impression, not the
component parts or the particular tricks of
presentation, that count. In a movie it
doesn’t matter what kind of camera or
form of scenery was used to make a given
shot; what matters is the contribution that
the scenery makes to the shot (and its feel),
and the contribution that the shot makes to
the film (and its feel).

The interactive system, [think, may
best be thought of as a new kind of movie;
but a movie that you control, and a movie
that is about something you wish to affect.
And it is the imagining of this interactive
movie that is the important design task.
Never mind the nuts and bolts — what's
the dream?

The following brief discussions are
intended to highlight some intcresting
systems and their special features, con-
sidered as virtualities. In the final part of
the article I will endeavor to tie together
some general principles of virtuality
design.

_
2

A more detailed analysis would get
down to exact controls and the way they
are merged with presentations, showing
the infuriating intricacies of ramification
that must be dealt with. I could spend a
page comparing the cursor behavior when
two different word processors Delete, and
much more on the nature of conceptual
structure. But not in this overview.

DATALAND

One of the most striking and easy-to-
use computer systems in the world is the
system called “Dataland,” created by
Nicholas Negroponte and his associates at
the Architecture Machine Group at MIT.

The Dataland user sits at a large
screen with various controls. The main
controls are essentially joysticks that allow
you to pan and zoom.

On the screen you see an unusual
collection of pictures, some quite small.
You may zoom in on anything (panning
the screen to select what you want
magnified), and the original pictures or
symbols will be enlarged, augmented by
more detail, or replaced by other pictures.

In principle this can go on indef-
initely. It is like being in satellite orbit with
a huge zoom lens, able to look at an
overview of Los Angeles. then magnifying
it until you can read the fine print on a
newspaper on the sidewalk.

Because Negroponte is a great show-
man, he has dolled the system up with a
variety of graphic features, synthesized on
the screen by computer. such as ticking
clocks.

1nteractive Systems cont d...

By storing detailed information on
any topic in the Dataland at specific levels
of magnification, it is possible to put huge
arravs of data where the user can
essentially pick out what he wants
graphically and dive into it. A stunning,
sweeping concept, rather obvious if you
think about it; yet it makes many of the
systems that have been developed for
database query look foolish. You can do it
all visually with Dataland, at least with
hierarchical data. In under ten minutes’
training, you are able to search through
great hierarchies of stored information,
pictorially.

Although the system in its present
form requires millions of dollars worth of
equipment, I am sure that within a few
vears we will have access to comparable
systems on machines as small as the Apple
or Atari.

Enthusiasts have supposed that there
is something fundamental and magical
about Dataland’s two-dimensional array.
From ‘the standpoint of virtuality theory,
however, the 2D array is only one kind of
clear and simple world. This system’s
power simply shows the power of two-
dimensional organization in our thought,

especially because of our experience with
paper and other 2D viewingsituations. But
there are many other powerful organizing
ideas. While clarity and simplicity (and
good examples like Dataland) are desir-
able, many other screenworlds will also be
exciting and useful.

VISICALC

One of the most important new
software products is Visicalc, originally
designed by Dan Bricklin and now
marketed by Personal Software, Inc.

Visicalc (see review in last August’s
issue of Creative Computing) effectively
creates a vast dynamic worksheet for
bookkeeping, accounting and financial
planning.

Now, many people suppose that
accounting is an exact science. Many
accountants. however, feel differently. A
great deal of their time is spent reworking
columns of figures and deciding which
numbers belong where. An accountant
may spend hours creating lists of expen-
ditures. adding them up — then removing
items, putting other items in, and adding
the column up again in its new form.

This is all perfectly legitimate. Just
why accountants do this all the time is

outside the scope of this article, but they
do.

Visicalc consists of programmable
columns. You may create, for instance, a
column of figures. and tell it to keep a sum
at the bottom that is always correct; every
time you insert or remove a new item, the
sum is recalculated.

But Visicalc goes much further. You
can tell this programmable worksheet, for
instance, to take 20% of each figure in
Column A and put it in a corresponding
position of Column B.

The programming is by example, and
somewhat hard to learn, but Visicalc
essentially allows the creation of an
enormous array of columns and terms,
with fairly complex relations among them,
all instantly up-to-date every time you
change a figure.

Those who work a lot with figures
consider it breathtaking, and there are
accountants who consider it reason
enough to get a computer.

Visicalc might be visualized in any
number of ways. I like to think of it as two
sheets — the columns of figures, which can
be seen by the user, and the overall
program sheet, which cannot.

Thus the world of Visicalc consists of

PROGRAM SHEET
(invisible)

x%

WORKSHEET

o

Z
Z
2
&

9
2
2

SCREEp\

A sheet of columns, with instant summing-up and carrying-over, is controlled by an invisible program on an unreachable sheet.

58

CREATIVE COMPUTING

S\ i

Virtuality, contd...

these two sheets: but the views allowed of
this show only the lower one. (This is
something like the division between
Heaven and Earth in some religions, the
former supposedly being visible and the
latter not; but 1 would hesitate to conclude
anything about the religious views of
Visicalc's designers from this.)

Considered as a virtuality, then,
Visicalc has a serious blind spot: although
vou create and use the program sheet, you
are not allowed to see it.

Pointing up such omissions is a
possible benefit of thinking in terms of
virtuality. By considering the whole shown
world, its views and feel and control
structures, we can search out omissions
and asymmetries and suggest better
structuring. (That this is possible for
something as good as Visicalc shows that
this approach may be of very general
benefit in the future.)

PARKED CARS

An unusual example of an elegant and
spare virtuality is a work entitled “Parked
Cars™ by the Argentinian artist Laszlo
Snead. It has not previously been de-
scribed in print. While the work isstill only
in the planning stages for the Apple, it can
be considered as an interesting virtuality

o,
\'\.,

b
Sopoli A i e
ey S

b O R PR 'f"«w'

‘“"”"Wu

g,
\\'&...‘n

",

S\

whether or not it is ever completed.

Some might call “Parked Cars” an
Adventure game; the artist himself prefers
to refer to it as a “work of art.” Indeed, it
might be considered an X-rated work of
art, since it may include both sex and
violence, but only if the user so chooses.

“Parked Cars” is to be in the form of a
comic strip, showing one panel at a time in
Apple lo-res graphics. (This mode on the
Apple also allows an independent rec-
tangular panel of scrolling text, which may
serve as talk balloon or caption). Snead
intends the overlays for the whole of
“Parked Cars” to just fill one side of a
diskette, so there is to be much doubling-
up of text and graphics, in ways the artist
hopes will be inspired.

The action of “Parked Cars” takes
place at a scenic overlook on a parkway at
night. Three carsdrive in, inrandom order.
They are inhabited, respectively. by
persons that Snead refers to as “The Hot
Couple,” *The Nervous Couple™ and “The
Guy With a Knife.”

Now, a number of interactive stories
already exist for reading from computers.
This one may be the first to have extensive
graphics. What is especially interesting
from the virtuality standpoint. however. is
Snead’s selection of the user controls. and
the way they relate to the world we are
watching.

The user may simply rove through the
three-dimensional scene as a disembodied
spirit, spving on the different characters.

",
S S—_t

Watch from afar, or enter the person’s mind. You choose what happens.

60

But they won’t do much: they stay inloops.
The user may, however, enter the psyche of
any character, and rcad that character’s
impulses as they pass through his or her
mind. The full set of commands is:
ROVE AS SPIRIT
ENTER PSYCHE/LEAVE

PSYCHE
THINK (brings forth a thought
to read)

ACT ON THOUGHT
GO TOWARD/AWAY FROM
OTHER CHARACTER

A little cogitation will stuggest the
vivid potential of this small set of
commands. playing through a suitable
scenario — which Sr.Snead is well advised
to supply.

What is less obvious is that this
interesting control structure is especially
suited to the somewhat raw material that
Snead has chosen. While the same control
structure could be applied to a more
urbane dramatic setting — say. a detective
story or political melodrama — the
potential tedium on the one hand or wildly
varying outcomes on the other would
create great difficulties. The choice of a
small cast in a highly-charged small setting
would seem to be ideal balance for working
through the artistic premises of this
virtuality.

WORD PROCESSORS

Despite pioneering work by Douglas
Engelbart and others, popular opinion has
it that “word processing™ originated about
1967 with the appearance of IBM’s
magnetic tape typewriter.

Since then “word processing systems”
have become epidemic. These are almost
invariably disguised computers with a
fixed program that acts only as an
interactive text editor — you aren’t
allowed to run any other program.
(Indeed, the salesman will deny ardently
that it is a computer).

If you have a personal computer,
however, the term’s meaning shifts: a
“word processor” becomes an interactive
text-editing program that you run on your
computer. (The marketing of personal
computers is already beginning to impinge
on the field of fixed-function word
processors — the kind that won’t let you
run any other programs — and this is due
to increase.)

Now, for some reason every technical
wonk in the world thinks he is capable of
writing a good word processing program.
But in my opinion there does not exist a
single satisfactory word processing pro-
gram anywhere in the world.

This is not the place to hold forth the
argument in detail. My basic view,
however, is that a proper word processor
should be, like any other interactive
system, an artfully constructed virtuality,
an integrated system of world, views and
controls that is extremely easy to visualize,
roam in and change.

CREATIVE COMPUTING

i

Virtuality,cont’d...

Computer people (who are not
usually concerned writers) have gotten
some fairly twisted notions about the
nature of text. The correct units of text are
the word, sentence, paragraph, heading
and chapter. Yet for some ungodly reason,
computer people have gotten the idea that
the units of text are the character
(including control characters) and the /ine
(or linefeed). This in turn leads to the
unfortunate writers being told by the
programmers that they're not thinking
logically because they can't keep their
minds on the invisible control characters.
The programmers’ heads have been in the
wrong place, implementing the wrong
virtuality.

(We will not even discuss here
problems of the loss and protection of files,
or the atrocity of short filenames required
by some popular operating systems.)

Now, a case can be made for baroque
word-processing programs that take weeks
and months to learn, and allow you to
format output in columns, windows and
whatnot, but the fundamental problem of
word processing is fast input and revision,
and making the system easy to learn for
evervone in the office (including office
temps). Thus I think we need simplicity
more than we need the baroque.

I have personally been designing word
processing programs since 1960, and
indeed the theory of virtuality presented
here has co-evolved in part with the
designs. But 1 will only inflict one of my
text designs on the reader of this article,
and that only loosely.

That design is the JOT™ system
(Juggler of Text). And its special virtue is
its ease of learning and use. In all cases
where the system was demonstrated to a
fresh user, the user learned to insert. delete
and rearrange text in under seven minutes.
(Unfortunately the implementation died,
being in an obscure language on a now-
defunct machine, and this figure is for a
total number of less than twenty people.
However, the system is presently being re-
implemented for the Apple.)

Basic Operations

The basic operations of a simple word
processor are essentially insert: step
forward and back by word, sentence or
paragraph; delete units of various sizes;
and rearrange.

The JOT system was originally
designed to do all this with the Teletype
Model 33 as a terminal, capturing full
upper and lower case even though that
device has no shift key.

There are no command input strings.
There are also no menus, a certain
minimalist aesthetic having taken over.
Half a dozen or so keys have been given
new meanings which appear to hang
together psychologically.

For instance, in one of the principal
modes, left arrow means “move leftward to
the beginning of the sentence™ and the right
arrow means “move rightward to the end
of the sentence.” The space bar means
“step one word.”

In the other main mode, the same
controls mean “step left to the beginning of
the paragraph,”*stepright to thebeginning

FIRST PARAGRAPH (Condensed to one line)

PARAGRAPH (Condensed to one line)

PARAGRAPH (Condensed to one line)

SENTENCE (Condensed to one line)

SENTENCE (Condensed to one line)

STRAIGHT TEXT ("Word Mode")

STRAIGHT TEXT ("Word Mode")

STRAIGHT TEXT WORKLINE (Cursor stays on this line)

STRAIGHT TEXT ("Word Mode")

STRAIGHT TEXT ("Word Mode")

SENTENCE (Condensed to one line)

SENTENCE (Condensed to one line)

PARAGRAPH (Condensed to one line)

PARAGRAPH (Condensed to one line)

LAST PARAGRAPH (Condensed to one line)

(VARIOUS PROMPTS)

ScreenJ ot™ — the expanded version of JOT — shrinks an entire document to one screenful, condensing
sentences and paragraphs to one line each for orientation and overview. The cursor stays on the midline.

62

Superstep
(one higher unit)

& | &

Step One
Current Unit

T

Delete One
‘|Current Unit
_.>

v

Current Text

&)
< >

position J

of the paragraph.” and “skip one sen-
tence.”

I will not attempt to justify these
commands in isolation: it is the whole
system whose virtuality we design. and the
individual commands stand or fall as part
of this whole.

Some programmers consider the
command structure of JOT to bedetestable
and illogical. But the system was not
designed for programmers. It is intended
to be usable for hours on end by non-
computer people who are tense (sometimes
frantic), and utterly preoccupied with the
words, not with the machine.

The actual state-diagram flowchart of
the system is a hairy mess. (Indeed, the two
programmers who implemented it orig-
inally agreed between themsclves that it
was all wrong — until they saw it in
operation. Both became ardent virutality-
design freaks. The fact that two exception-
ally talented individuals were not able to
imagine the system’s performance from the
flowchart shows what we are up against in
general.)

I have spent no fewer than five
hundred man-hours on the design of the
JOT system’s virtuality only, not counting
any implementation. My impression is that
most designers spend little or no time on
virtuality design. While I make no claim
that quality of work is ever proportional to
the time spent, I think that the important
thing is to design the interactive qualities
first, then implement.

In essence the design process for JOT
involved considering many different
desirable features and operations, then
cutting them down judiciously to a very
small but powerful set that could be easily
learned. In addition, it became a challenge
to marry the desired control functions to a
sparse keyboard (such as that of the
Teletype or Apple) while still making it
seem natural. Others can judge from the
live system whether this has succeeded.

Regardless of the success of this
particular design, we will return to these
principles, and try to generalize them,
later on. O

(TO BE CONCLUDED
IN THE DECEMBER ISSUE)

CREATIVE COMPUTING

N7

b
Interactive Systems and the D

94 CREATIVE COMPUTING

Design of Virtualityreme reanas

— In Part I, we considered some nice ex-
amples of highly responsive systems. The
reality of their implementation details is
comparatively unimportant. What is im-
portant is the design of the conceptual
- structure and feel of a system; we call this
9 its “virtuality” as distinct from the (unim-
portant) reality.

In this concluding section we consider
some more design examples, and en-
deavor to find the right principles on
which to base the design of interactive
systems in general.

A COMPLETE SYSTEM

In one design, the Funny-Face
-~ Softree TMsystem. I have endeavored to
show that one simple, overarching con-
trol structure can be used for a complete
personal computer system—including
word processor, scheduling system,
graphics package. bookkeeping package.
typesetting and layout programs. etc. (I
do not wish to imply, of course. that this
is the only way to organize such an inte-
grated system: merely that this one inter-
ests me.)

There are four basic controls. These
are the onfy controls. They may be
understood quickly in a brief demonstra-
tion, but in fact the further ramifications
of their interaction may become clear
gradually. ’

The controls we call up. down. around
and flip.

up P
FLIP

AROUND

DOWN VY

I would marry these to the Radio Shack
keyboard as follows:

upP
= [l

AROUND N)
DOWN

Up and down are the easiest. The user

t:1980 T. Nelson. Trademarks cited are those
of the author.

DECEMBER 1980 95

Virtuality, contd...

is at all times on a tree of functions. Each
node is a particular activity or way-
station on the tree. Up of course takes
you to the node above you on the tree.
And on this tree. down is always specified
at any given moment as one of the
specific alternatives below.

v

We may call this a larching tree. From
your current node you may go down or
up. If you go up. you get to the top: if you
go down. vou follow the path of already
latched. or chosen. selections.

How do you change the selection of
the node which is down” You do this by
pressing around. which selects in turn
each of the different alternatives below.
(1 call such a circular succession of
choices a ringstep.) Thus to go between
any two places on the tree only a few
particular steps are required: something
like up. up.around. down. down.

D AROUND

e o

Jup N\ DOWN

P gl uUpP DOWN

|oroio gl 7 =)

How do you see where you are and
make the choices? Now comes the really
unusual part. Each menu is a jack-o-
lantern face.

§ BOOKKEEPING

WORD PROCESSOR

You go up and down a tree of menus.
Each face has one of its features (left or
right eye, nose or mouth) flashing
slightly. This is the current selection
‘below.

Now a frequent complaint about
menus is that you have to take time to
read them. In this system that is only true

at first: because every menu has a
different facial expression. So that as you
become familiar with the different
menus. their scowls and grins tell you
where you are at once. and you can make
vour choices faster and faster.

At the very bottom level of the tree are
particular activities: down there com-
mands the events themselves.

There are also working faces, however,
corresponding to every menu. on which
materials may be viewed, scrolled. etc.
This working face is the “other side™ of
the menu. You get to the workface. or
back to its menu. by flip.

MENU 4— FLIP—> WORKFACE
’[upP uP

|
|
< DOWN DOWN
MENU «— FLIP—— WORKFACE

That's essentially all there is to it. What
vou have seen is what the beginner sees. |
have left out showing how the different
parts combine. so that. for example. the
¢raphics tablet used with the scheduler
produces animation. or the scheduler
used with the word processor permits a
magazine layout.

I would point out certain other
features, however. One is that there are
very few steps between paired activities.
and the user going repeatedly back and
forth between them gets into a rhythm.
Faster methods would be in reality less
simple.

Another aspect is the system’s unifor-
mity of replicative structure. You can go
anywhere with confidence that the struc-
ture will hold. (It does become quite ir-
regular, however. at the bottom or execu-
tion level.) : 7

Some people tell me they'd rather hav
an input-string command language.
That's a mater of taste. Other critics say
this system lacks generality, which misses
the point. It is simple, easy to learn, and
integrated. You cannot get lost. And the
funny faces are good for a laugh.

THE XANADU "™ HYPERTEXT EN-
VIRONMENT

The Xanadu ™ hypertext system,
toward which I and colleagues have
worked for some twenty years now, is
intended as a super document library and
annotation system, among other things.
We may also think of it as a new form of
storage and publication.

The Xanadu system is planned as a
network of storage computers in
McDonald’s-like ~ franchised stands
around the country. By dialing into your
local Xanadu stand, you may get any-

98

thing on the whole network—to which
vour local stand is tied by high-speed
lines. You must access the system from a
fairly powerful terminal—that is. a com-
puter. for reasons which will become
clear later.

While most of the Xanadu work has
gone into problems of its implementa-
tion—especially algorithmic design and
analysis—the system's emerging virtuali-
tv has acquired an extremely interesting
character, yvhich I will now describe. -

Everything stored in the Xanadu sys-
tem we call a document. A piece of text,
a picture, a movie (someday), a lonesome
marginal note —each of these is a docu-
ment.

Any document you want comes when
vou ask for it. if you are entitled to it.
A document is private or public —that is.
published. Any user may call up any
public document instantly. as well as his
own private documents or any other pri-
vate documents he has permission to use.

LINKS AND WINDOWS

Links may be put anywhere in any
document. Links. like footnotes or mar-
cinal comments. permit 4 user to jump to
related material at any time—and come
back from that other material when he
likes.

Free-form, non-sequential writing of
any kind—what we call collectively
“hypertext”—is made possible by these
links. But the virtuality of general hyper-
text would take a book in itself.

An important type of link is the win-
dow. A window may be thought of as a
“hole™ in one document through which
shows a part of another document.

CHANGES AND VERSIONS

Not only may an author store a docu-
ment in its present form: he may, if he
chooses, write or rework the document
on the system, with the changes them-
selves stored. The Xanadu system does
this at a uniquely low incremental cost,
since our data structure and algorithms
essentially assemble parts of a given ver-
sion as they are needed—without ever
bothering to assemble the full consecu-
tive structure, unless it is asked for.

Thus the user has access, if the mater-
ials are saved and open to him, to a re-
construction of any previous version of a
document at any previous moment he
cares to specify.

Not merely consecutive historical
changes, but alternative versions, may be
generated at any time. Thus a document
may be “rewritten” for different types of
readers, and these different versions stor-
ed at low overhead.

The user may ask to see any given
piece of text (or other information) inany
version or at any previous time.

CREATIVE COMPUTING

Virtuality, cont’d...

Zepsniniisgg,
W A n

A link made to a certain part of one
version of a document may be automati-
cally followed through to the same mater-
ial in any other version of that document
or in its previous incarnations or in other
public documents that windows it.

We believe that this “versioning”
facility, of linkage across backtrack and
alternative versions, solves a central
problem of text systems — that of cross-
referencing any parts still being worked
on; a problem which is chopped at and
nibbled at everywhere but is often dealt
with in ineffectual ways.

FREE LINKING BY ANYBODY

You may create a document that links
to any other documents, if they are
public (he who publishes must agree to
this in advance).

You may create, in your document,
windows to ‘anybody else’s public docu-
ments. (Since they get the royalty when
their part shows, they should be pleased.)

This is how we handle marginal notes.
If you create a marginal note, it is auto-
matically put in a new companion docu-

ment. your document. which is perman-
ently linked to the document you have
annotated.

(This “companion document” idea also
frees you to alter and rewrite any public
document any way you like—since the
alteration is in a private file of your own
that points to the intact original.)

COPYRIGHT

“What of the copyright problem?" you
ask. Our solution is simple: as you use the
svstem. you are continuously paying
small increments of royalties to copyright
owners. These are modest amounts. the
same for all users: for instance. if we
can supply the service for two dollars an
hour at 30 characters per second. the
fixed royvalty runoff will probably be
about five cents an hour. This is divided
among the copyright holders in propor-
tion to how much you used from
each—sliced very finely.

What keeps people from making
copies? Nothing. since terminals are
under the control of individual users: but
since everything is still stored on the
svstem and available instantly. the cost
and inconvenience of making and filing
private copies will be often seen as super-
{luous.

OVERVIEW: THE XANADU SYSTEM
AS A VIRTUALITY

The above description specifies a
general and powerful facility for busi-
ness, literature, correspondence and digi-
tal storage of all kinds.

As such it represents a cohesive and
unified virtuality which has been thought
about and reworked for years. Its appear-
ance of simplicity and obviousness is the
distinctive quality of a carefully wrought
design: There are hundreds of other ways
to do these things, as experienced com-
puter people well know: yet making
the parts hold together clearly, comple-
ment each other, and make sense, takes a
very great deal of work.

XANADU FRONT ENDS

Of the functions described above, only
a few are actually handled by the Xanadu

. service network: put this away and give
me that in such-and-such a version are -

really all that the Xanadu back-end
machines do.

The rest has to be done, actually, in
your personal computer. Marginal notes,
for instance, require making a compan-
ion document out of your marginalnotes,
for instance, and declaring it and putting
it away in the network. Most users will
also want to keep track of how they have
been jumping among various documents
and activities. These necessary functions
belong in your own computer.

100

Thus the “full” Xanadu system. as we
recommend it be used. entails a cooper-
ating program in your personal machine
that acts in these ways.

Thus full Xanadu service has two
parts. The “back end” is the proposed
Xanadu network; esentially all it does is
store and fetch by versions and links.

But a high-powered terminal is needed
by the user, to show the documents sent
by the back end, to present the possible
actions the user may take. and to trans-
late these choices into the proper fetch-
and-store instructions for the back end.

This is of course the “front end.” There
are many possible ways to visualize and
control the Xanadu functions—even
before graphics or music are stored on
the system—and we welcome imagina-
tive front-end programs of any design.
even if marketed independently. The
Nanadu project will. however. offer
cuidelines for front-end design.

If vou choose to use the back-end net-
work in some other way. that is your
privilege as a customer: but in order to
encourage what we see as desirable
modes of operation, we will be offering
various trademarks to software vendors
who wish to create cooperating front-end
programs.

Given the overall virtuality of the
Nanadu system, there are countless possi-
ble ways to summon, visualize and con-
trol its operations on screen. All of these
are valid and welcome. To give some
ideas of the possible varieties, 1 will
discuss two very different Xanadu front
ends.

(Since these are highlights of the two
front ends, no attempt will be made to
show all the functions, reconcile their
different emphases, or intercompare them.)

THE XANATREK "MFRONT END

The standard Apple computer, laud-
able as may be its general qualities and
capabilities, has a few conspicuous limi-
tations. One is its text screen, only forty
characters wide.

However, an Apple strength is
fast-action low-res graphics. Two pages
of hardware memory are dedicated to
either text or low-res graphics. We will
proceed to use this fact. i

The Xanatrek front end has been de-
signed for fast and exciting use of the
Xanadu facilities, as well as for invigorat-
ing use of its low-res graphics.

The system was, quite frankly, inspired
by Star Wars, and shows how far you can
go in playful and analogous use of
graphics.

One of the things a Xanadu user must
be able to do instantaneously is ask exact-
ly what he is looking at—that is, having
jumped to something or wandered by
degrees from his original activity, he

CREATIVE COMPUTING

Virtuality,contd...

needs an instant and valid explanation of
what he is looking at.

Very well. While reading anything
from the Apple screen (from page one of
memory) the user may instantly demand
a map of what he is seeing. This is con-
tinualiy available and up-to-date in low-
res color. on page two. But aha, you say,
how canyouread it.since the color display
disables the character generator? The
answer is that the various patches of
identifying text are indeed visible on this
map as patches of seemingly random
color. but since the Apple allows one text
window on a low-res screen. successive
boppings of a particular control will step
the various text labels into a readable
panel.

The most amusing visualization in the
Xanatrek front end has to do with seeing
the major features of a document such as
chapter breaks and seeing links as well
from a companion or other document.

This brings out the "Star Wars™ styling.
What the user sees looks like a huge pass-
ing spaceship or perhaps a packing crate.
in the vault of night.

One of its visible sides shows the major
parts of the text itself. as streaks of color.
The other visible side shows the entrance
points provided in your companion docu-
ment. (You may select any of these
places for your next trip.)

Other ships that pass in the night are
documents linked to this one. Want to
see the links? Hit a button, and animated
squares fire from one ship to the other,
with that p'tew p’'tew sound we Star Wars
fans have grown to know and love as the
sound of a laser weapon in a vacuum.

THE CORNERCOPIATMFRONT END

This Xanadu front end has been
thought out for implementation on an
actor language on a small Sorcerer com-
puter.

There are many approaches to the de-
sign of screen panels. One approach,
generally associated with Xerox
PARC, strews panels diagonally on the
screen. The approach that follows is
intended to be a little easier.

Five to ten screen panels are accesible
at a given time. They come out of corners
of the screen.

Each panel keeps one free corner an-
chored in a particular corner of the
screen. Its opposite corner remains
always visible but may be moved by the

user to any position which does not obs-
cure any other panel'sfree corner. As
with PARC panels. any “behind™ panel
may be instantly brought to the front
without moving its borders.

Each panel is labelled with a one-line
titie (at the top of the lower panels or the
bottom of the upper ones).

The text may show and scroll in any
panel: naturally dependent or “parallel”
text (a standard Xanadu statement) may
scroll in any other visible panel with links
to the independent text shown by scroll-
ing svmbols on the panel borders.

Perhaps this environment seems not to
show enough. Very well: some panels
themselves represent other such environ-
ments: when brought to the fore they
swell up to become other multipanelled
VIews.

OOF

The “office of the future™ will consist
basically of cabinets for incoming corre-
spondence. printers for outgoing corre-
spondence, and in between, screens,
screens, screens.

In this highly competitive area, harried
programming managers everywhere are
under pressure to work out what happens
on the screens. But what do they, or any-
body, know about it? It's not a technical
problem! It's merely delegated like one.

The problem has nothing to do with
technicalities; all of these are squared
away. The problem is in the design of
virtuality. But I know of few designers at
present competent and imaginative
enough to make those screens come alive
and make working at them a joy. Which
is the real problem.

WORLD AND VIEWS

An interactive virtuality is essentially a

BARRIER OF
VIEWS AND
— COMMANDS

USER _/(;

) W N

I\

102

WORLD OF ACTIVITY

world created by a programmer or de-
sivner. This world has a certain structure
which may be easy to understand or hard.
This World is visible through different
views allowed by the designer.

The World is what you're really think-
ing about: the view is the temporary way
vou're looking at it.

The distinction between World and
View is crucial. The World is what the
user is supposed to be acting on and
thinking about: the View is all he really
gets. (Controls are in a way part of the
view.) If Views are good, the World
comes to seem real, natural, at hand,
under control. Poor Views (or worse. a
hard-to envision world) create confusion
and poor usability.

The system should have easy-to visual-
ize states and conditions. and. pre-
ferably. some kind of spatial orientation
that readily becomes a map in the user’s
mind.

The designer should begin by thinking
about visualizing the World, not the
Views. and let the Views come later.

(Yet designers are always getling
seduced by particular views and treating
them as the world itself.)

The principles of the World are the
central, integral, virtuality: how vou see
it is secondary. It is important to acknow-
ledge the cruciality of World design. and
consequently the importance of the prin-
ciples you develop for it.

The designer creates a simplification
or stylization of the original world. There
must always be some reduction or styliz-
ation; the important thing is that these
reductions or stylizations not detract
from the principal things you need to
understand and control.

In transposing an old activity, the ques-
tion is what to retain in the world and
what to dismiss as part of the view. (For
instance, Text Pages—divisions of
text—are part of the View, not the
World.)

Anything can be shown, any buttons or
sticks or whatever, with any preenta-
tional machinery. People are always
asking for bigger screens—but actually to
ask for a bigger screen is usually a
copout. Ask for higher performance.
Faster flips and flaps and scrolls and
panel pop-ins. Fast action and seething
cues. Leave several things on the screen
at once, to remind you of what you've
been doing, what you might be doing,
what else there is to do, and any other
current options.

The operations in the user enviroment
should feel more and more like opera-
tions on the world. As stated above, con-
trols are in a sense part of a view. Any-
thing can be controlled by almost any-
thing, buttons or sticks or keyboards.

An interactive system should have very
few controls and these few should have
far-reaching and powerful uses.

Marry the available controls and the

CREATIVE COMPUTING

10

Virtuality, contd...

desired functions. Menus should be used.
rather than input languages or the ficti-
tious “natural language dialogue;”™ or
better, yet. control diagrams.

Actions should be easily reversible and
their consequences immediately recogni-
zable so the user can back out of a mis-
take without being punished. (Compare
this with the word-processor horror stor-
ies you hear all the time.)

Most important,the overall principles
vou choose for a system should be sweep-
ing and have few or no exceptions. In
order to clarify these issues we must con-
sider the issues of both soft principle and
soft clarity.

THE PHILOSOPHY OF SOFT PRINCI-
PLE

The following discussion has to do with
the design of principles,which is in fact
the essential issue.

incomplete. I would like to put it another
way and call a principle whose impli-
cations are inexact. a soft principle.

This throws things in another light.
Rather than suppose the soft principle is
just “not finished yet.” let us consider it
instead another logical category —some-
how analogous to the conventional hard
principle. but not subject to deduction.

If vou can't deduce. how can it be
logical? The answer may be that we've
been looking at the wrong features of
logic and have missed the analogy. There
are in a sense soft equivalents to impli-
cation, contradiction, and other logical
configurations. (See table.) I hope to dev-
elop these ideas more broadly at a later
time.

What good is this analysis? At the very
least it is suggestive. If a principle is by
nature soft then we can understand it on
its own terms rather than insisting that it
hasn't properly hardened “yet.”

Or take soft design ideas. A given idea
could be worked out into hard form in
numerous different ways. Some vou may

SOME FAMILIAR IDEAS SOFTENED AND RECONSIDERED

Hard
IMPUCATIONS" Hard Implication,
RAMIFICATION Consequences
PARADOX Contradiction
COMPLICATION Obstruction, Inter-

ference, Conter-

vailing Principle,
Something in the Way;
Amendment, Modification

Soft (or mixed)

Possibility. Tendency, |
Expectation,
Connotation

Irony, Oxymoron

Things to be
Clarified, Resolved
Worked Out

We frequently consider something and
ask ourselves: What are the implications
of this? And one of the nice things about
science and technology is that the impli-
cations tend to be clear and exact.

In many cases, though, implications
tend to be less certain. Implications don’t
follow clearly from premises. Those who
want clear-cut answers become edgy or
annoyed. The main tradition of Western
thought has been to try to find the exact
implications of every idea. (Ideas which
don’t seem to have exact implications, as
well as people who prefer unclear situa-
tions, cluster in the humanities or “fuzzy
studies.”)

But some things are by their nature
unclear in implication. These include
both cluster-concepts (“Democracy,”
“Womanhood”) and design ideas (“Let’s
see, maybe it could fold back onto itself
somehow”).

By tradition we often tend to talk of
such ideas as improperly formulated or

like better than others, and a variety may
be valid.

Now take several soft design ideas, all
at once. How do their ramifications fit
together? The answer is indeterminate,
since the ramifications of each could take
many forms. But if you are aware of this,
then you can search carefully for the
combinations of possible workings-out,
their variety and their interactions.

The “inspired” design of something
finaland precise comes, I believe, from
sifting many such co-implications of
possible hardenings of the ideas.

And the important guideline is: don't
rush it. Don’t take shortcuts. Don’t
assume that decisively pinning down one
aspect of a design will speed things up;
it’s like nailing your left shoe to the floor.

If we think of design as the search of
many possibilites, “soft design” is that
which is sensitive to unexpected simplifi-
cations, conveyances and harmonies.

In short, don’t be too sure of what

104

vou re looking for, and be ready to appre-
ciate the ramifications of surprises.

Principles in Practice

Eventually. the soft design principles
we have tried out lovingly must be
hardened into specific hard forms of
computer operation. What should the
~rinciples be like? Again tradition may

ilitate against recognizing the best

:sign decisions.

The general principles of a system,
once chosen, should be consistent, but
“consistent” according to looser criteria
than the designer may be used to. In
particular. a design principle may be psy-
chologically clear for people to work
with. easily visualized or imagined. vet
not reducible to any customary formal-
ism.

Indeed. “consistency™ here takes on a
strong psvchological flavor: a thing is
consistent if users think it is consistent
and use it consistently —even if we don't
like it, like the double negative in
Spanish. (We may call this naive consis-
tency or soft clarity.)*

Thus the final chosen principles need
not be “logical™ in the rigid sense of
conforming to somebody’s predefined
notion of how things should behave. But
working out in soft form. we study their
fittings-together in great detail.

The designer should eliminate any
background notion that the user must be
like him. All too many designers reward
the user for being like himself, the designer,
or punish the user for being different or
thinking differently. The objective is to be
of service, not to clone yourself.

TECHNICAL TRADITIONS VS. SOFT
DESIGNS

The design of virtuality is essentially
the design of operating principle. The
design of principle, in turn, has to do with
the generation and modification and
inter-sculpturing of soft principles.

The biggest design problem though, is
that the designer tends to freeze too
quickly on a particular set of rules and
arrangements. Technically-oriented people
tend to seize one or two principles and
hang onto them through thick and thin,
not perceiving when it is time to rework
their ideas.

I have learned through bitter exper-
ience, indeed, that only a small propor-
tion of technical people are even capable
of listening to this viewpoint. The soft
design of virtuality seems to be totally
alien to technical training.

* Mark Miller, who worked on the original
JOT system, considers it a consistent
virtuality, even though it “corresponds to no
known paradigm of program structure.”

CREATIVE COMPUTING

1

Virtuality, contd...

Those who design interactive systems
tend to be technically trained. and
technical training generally promotes the
baclground assumption that what you
are working on is given and well-defined.

Training in the arts and creative fields,
on the other hand. promotes the ideas
that a design (or piece of writing or a
movie) is fluid. may take many forms.
and will be reworked over and over until
it reaches a final state that may be wholly
unlike its earlier stages. 1 believe this
latter outlook is far more appropriate for
the design of interactive systems.

CONCLUSION

Interactive system design is a field in
itself, utterly unlike what is taught in any
computer science department I know of.
If I have not proved this point. I hope the
designs and ideas presented here will at
least provoke some unease.

(This is no claim that these designs are
righter than any others: but rather that
these designs are a unified package that
feels richt and is therefore of interest.
They represent local peaks in design
space. In the sense that small changes
would, I think, detract from their unity
and clarity.)

These designs represent hundreds of
hours of work, but the difficulties of the
decisions and the rough edges don't show.
(That’s part of good design and art).

The art of designing things in general is
very little understood. People think that
something is well-designed if it is sleek,
stvlistically unified, and if its controls

much alike as possible. (An

~ic is the “designer” audio equip-

om Bang and Olufsen, showwut the

n of Modern Art and copied

v+ nere, where every control resem-
bles every other control.)

This approach is wrongheaded beyond
belief. (I think stereo equipment is poorly
designed, and B&O the worst of them.)
You do not want controls that look alike.
You want controls that look and feel
different. If you have a big round knob
for the volume control, you should have a
square knob, or a slider, for the tuning.
There should not be a row of similar
buttons for different functions, but a row
of different buttons—or better, not in
rows,but some otherarrangement contras-
tively arrayed. Do you need glasses to
read what it says above the knobs? Lousy.
Can you tell at a glance one control from
another? Good. CAN YOU WORK IT
IN THE DARKY Terrific.

As a rough guide, good design is inver-
sely proportional to the probability of a

mely difficult and time consuming, in the
same way that it takes more work to write
a short article than a long one.

You should not “design the system™
first, and then put on a “friendly front
end”, (although this is what must be done
in many cases), any more than you should
first shoot a movie and decide what it is
to be about (although this occasionally
works).

An interactive system should become
second nature, and become second
nature quickly. This is essential for many
reasons. One is that we will have to move
among many different interactive
systems in the future, and there will be no
time to savor and adapt tothe local compli-
cations of each. They will have to spring
clearly and straighforwardly at the mind
and hand.

Moreover. interactive systems will be
used intensely for hours. often by tired,
high-strung. frantic people, who are try-
ing to get a job done in a hurry, and who
are thinking only of the world they are
trying to operate in—not the intervening
complications. It is up to us as designers
to create fast, safe. elegant systems of
view and operation without snags.
dangers or complications.

The system designer, or movie
director—Ilet’s call him you —must have a
full understanding of what things are easy
to do, what things are not, and what is
hopelessly impossible. You then make a
collection of all the ideas and visualiza-
tions (and scraps and parts) you would
like to put together in your system. Then
your rework them and rework them, and
rework them.

THINK OUT THE WORLD

—Its many views and aspects; its real
nature (unlike what has been thought of
as its nature);

IMAGINE ALL THE CONTROLS AND
PRESENTATIONS YOUD LIKE TO
HAVE,

REDUCE THE CONTROLS

AND PRESENTATIONS

TO AN ADEQUATE,

POWERFUL,
EASY-TO-UNDERSTAND SET:

.MARRY THEM TO THE AVAILABLE

SCREENS, KEYBOARDS AND POINT-
ING TOOLS.

ABOVE ALL, DESIGN THE FULL-
EST SYSTEM FIRST—THEN CUT IT
DOWN, IF YOU HAVE TO. YOU MAY
FIND YOU DON'T HAVE TO.

That this is nowhere taught is much

user maklng a mistake. And this criteria/ ;, worse than regrettable. Because unfort-

carries over to interactive computer sys-
tems.
To make a system easy to use is extre-

unately the salaried programmer has, in
effect, a license to inflict on innocent
users anything he likes under the pre-

106

tense of technical necessity or on the
basis of some off-the cuff (or cufflink
consultant’s) assessment of “user needs.”
1 regard the decisions involved in de-
signs like those as intricate and inter-
dependent as moves in chess. This kind
of design needs a respect and even rever-
ence for the far-flung ramifications of
tiny decisions, and the staggering com-

plexity of making things simple.
I hope 1 have given a sense of this

~style of design.

I hope, too. that the reader will see it as
an art form—somewhere between
movies, diagramatics. the design of
machinery, the design of games, and the
building of philosophical systems.

When done well, it is done with
simplicity, consistency, conceptual
clarity and vividness. This is not
“technical™ work in any usual sense. |
consider it a form of design and a form of
art.

I believe that interactive design is,
more than anything else, what the com-
puter field is really about. I find it
monstrous and appalling that these
general principles are so little under-
stood; that despite all the pompous “com-
puter science curricula,” nobody teaches
these anywhere: and that innocent custo-
mers who want ~an easy-to-use
system—really, is it too much to
ask?—are too often led by consultants
and tekkies down a primrose path to end-
less horrors of complication and un-
necessary claptrap.

How you feel about all this depends on
what you think computers are all about
and where the world should be going.

If you want to show off to your family
and friends—or financial backers—as a
macho master of complicated technicali-
ties, then you don’t want things to be
easily.comprehensible. (In that case you
should be reading certain other personal
computer magazines.

But if you believe that somewhere
beyond all the technicalities lies some
kind of hope for a better future and a
smarter mankind, rich in ideas and know-
ledge and dreams—as well as
gadgets—then the question is how to
front-end the gadgets so that they bring
us knowledge, and ideas, and dreams,
without the technicalities being in the
way. O

CREATIVE COMPUTING

