


Digitized by the Internet Archive 
in 2019 with funding from 
Kahle/Austin Foundation 

https://archive.org/details/datarealmsmagicwOOtedn 



For the first three days of October, 1975, the Carson Inn/Nordic Hills Country Club in Itasca, 
Illinois was the scene of one of the best conferences of 1975.ACPA—V! 

Keynoting the ACPA—V Conference was Illinois Attorney General William J. Scott, who spoke on 
Computers and White Collar Crime. ACPA—V also brought some of the best minds in the business of 
Information Processing, including Dr. Harlan Mills, Terry Baker, and Glen Myers of the IBM Cor¬ 
poration; Ed Bride of COMPUTERWORLD; and Theodor Nelson of the University of Illinois. 
ACPA—V presented an up-to-date picture of the Federal and State Privacy issues with such 
knowledgeable people as George B. Trubow of the President’s Domestic Council on the Right of 
Privacy and Illinois State Senator David J. Regner, Chairman of the Illinois Legislative Information 
Systems Committee. Also presented were in-depth discussions on Licensing, Certification, EDP 
Career Development, and Virtual Systems. 

If you attended ACPA—V, then you know and can appreciate what an excellent conference it was. 
If you did not attend, then these proceedings will give you a review of the conference and perhaps the 
finest collection of technical, social, and professional ideas which have been presented in some time. 

I want to express my thanks to the ACPA—V Conference Committee Ron Stewart, Grant Berning, 
and Jim Brown, for helping to make ACPA—V the most successful conference that ACPA has 
sponsored thus far. A special thank-you goes to Marianne Fujara and her staff from the Word 
Processing Center of The First National Bank of Chicago for the original typing and editing of the 
manuscripts. 

I sincerely hope these proceedings will become a permanent part of your library and that the in¬ 
formation presented will be useful to you in some way. My best wishes to you and yours for a happy 
and safe 1976. 

Yours truly, 

Martin A. Morris, Jr., CDP 
ACPA—V Conference Chairman 
Chairman—ACPA Board of Directors 

Page 3 



whether he wants to stay with his present major software 
suppliers, Weizer said. 

If the user plans to stay with the same mainframe 
manufacturer, “U becomes very important to follow his 
lead,” Weizer advised. 

“All of the major mainframe manufacturers are showing 
their primary direction for fourth-generation software by 
their pattern of software announcements and enhan¬ 
cements,” he noted. 

“It is this ‘primary direction’ software which will be able to 
get the most out of the next generation of hardware,” he said. 

“Remain current on your operating system or start plans 
now for conversion to an operating system that will be 
supported in the fourth generation,” Weizer urged attendees. 

“You should never get more than one or two releases 
behind the manufacturers’ current operating system 
release level. Many of the changes being put into current 
operating systems are in preparation for the conversion to 
the fourth generation,” he said. 

“If you remain current, you may have several minor 
conversion efforts which will be more of an annoyance rather 
than a problem. However, if you remain static for three or 
four years, you may find the conversion to the new 
generation will be very painful.” 

Users who don’t want to stay with their present software 
vendor should try not to get themselves too locked into the 
vendor’s software, Weizer added. 

They should also “stay away from unique, extensive 
modifications o the operating system” and should not get tied 
into unique Cobol or Fortran features that only their current 
manufacturer’s equipment supports. 

For these users, the purchase of outside software packages 
which run on several manufacturers’ equipment might prove 
to be economical in the long run, even if slightly more ex¬ 
pensive in the short run, he noted. 

Weizer offered some thoughts on what form he felt fourth- 
generation computer systems would take. 

SYSGEN will probably vanish, and “current operating 
system functions may be spread across several hardware 
boxes,” he said. 

Users will be able to spread their processing load among 
several systems “as terminals and remote systems become 
more intelligent and as users and management demand 
more convenience and reliability,” he forecast. 

Cobol will remain the primary language for the next 
generation and, in fact, “the entire internal architectures of 
processors (hardware and firmware) are being optimized for 
high level language use.” 

“Vastly improved” data base and data communications 
systems “will offer greater ease of use, more device in¬ 
dependence, the ability to distribute and access one or more 
data bases on several geographically separated systems and 
greater data security and privacy.” 

There will also be greater use of independently produced 
software packages, with more turnkey, full-application 
packages for smaller systems, he said. 

A push toward greater convenience in DP use will em¬ 
phasize “distribution of processing power and emphasis on 
on-line processing.” 

Fourth-generation systems will also aim at reducing the 
time and resources taken by application development and 
maintenance, he said. 

Whether you’re a programmer or a manager, this is a 
message that cannot be ignored, no matter how hard it is to 
get people to listen. You may not perceive the change 
brought about by your persistence, but there’s no substitute 
for continually pushing for something you know is im¬ 
portant... which is quite different from pushing for a new 

machine because it’s good. The amount of purchasing you do, 
of course, depends on the openness of the ear at the top, 
whether we’re talking about the top of the department or the 
top of the organization itself; sooner or later, the falling 
drops of water begin to wear away the stone. Keep that in 
mind as you try to explain something to a stone-headed boss. 

Incidentally, if this all sounds very important, be aware 
that you must also be brave. After all, people do make 
mistakes even such as the simple one I referred to earlier, 
when it was discovered that the acquisition of a new 
machine wasn’t really justifiable. And to cover this con¬ 
tingency, I have a quotation from H. L. Wayland that I carry 
around with me...you might consider jotting it down for use 
when needed: “I saw a man last week who had not made a 
mistake for four thousand years. He was a mummy in the 
Egyptian Department of the British Museum.” And when 
you run up against the problem of changing goals, or on the 
other hand the reluctance to change when something truly 
traumatic happens such as a layoff during a recession or a 
new program for new taxes or a new log-on procedure or new 
record-keeping procedures becaus of privacy legislation, you 
might remember that Publius Syrus stated, “It is a bad plan 
that admits of no modification.” I’m beginning to wonder if 
my basic theme of little progress in EDP management is 
because there’s essentially nothing new in technology. 
Machines copy human clerical functions, people get 
criticized for speaking or acting like robots. Where are we 
going? 

I realize that I’ve touched a lot of bases here today, 
without going into a great bit of detail in any one particular 
area. But I do hope that you’ve seen a central theme around 
the need for better communications, leading to an improved 
role for data processors in today’s computer-using 
organizations. I’ve tried to serve somewhat as a conduit of 
information from people who are closer to the scene than I 
am. I have drawn from many different sources from many 
different ages, but none applies better...none is more current 
than this: “The modern age has a false sense of superiority 
because of the great mass of data at its disposal. But the 
valid criterion of distinction is rather the extent to which man 
knows how to perform, and must master the material as his 
command.” Because you get all positive-thinking that there 
is relief in sight because of the foresightedness of this in¬ 
formation source, I think I should inform you that these 
words were spoken by John Wolfgang Von Goethe, in the year 
1810. 

IBM has compressed his message into many fewer words: 
Not just data, reality. But we need people to turn data into 
something meaningful. We can collect and massage all the 
data we want to today, but it takes communications and 
planning to make all these efforts more realizistic, more 
meaningful, and to keep computers in the proper place. 

The computer room is a machine shop. Let’s get back to 
managing people. 

Page 22 



Data Realms and Magic Windows 
Theodor H. Nelson 

This talk will contain approximately one thought, which I 
think is the optimum number for an after-lunch address. 
None would be too few, though it is a number often chosen, 
and two thoughts would get in each other’s way and become 
confused. 

I want to talk about computer programming for business, a 
subject in which some of you are involved, even interested. 
But I will talk about it as an outsider, perhaps with some of 
the inspired vagueness which is permitted on these oc¬ 
casions. 

First, however, let me explain the point of view I am 
starting from. I have for some time been engaged in a 
project which is intended, to put it modestly, to be the library 
and publishing system of the future. 

Now, I am going to have to talk about that for a little 
while—what that system is about, and what it is attempting 
to do. I thought I would talk first about the assumptions and 
then about the actual design, but these easy distinctions do 
not work out in practice. The early assumptions are em¬ 
bedded in a philosophy, but that philosophy has gotten so 
deeply intermingled with the developing final design that 
there is no good starting place. Here is most of it. 

We will have to stop reading from paper. The trees are 
running out, the distribution and disposal of documents cost 
too much, and we can no longer find what we need in an in¬ 
creasingly fragmented world of information. 

Though most manufacturers steadfastly refuse to un¬ 
derstand it, the next big computer market is at the consumer 
level. (Thousands of Altair computers, priced under a 
thousand dollars each, have been sold this year already.) 
But consumers will rarely want to program. The next grand 
market in the computer field will be variety of consumer 
turnkey products—first games, then simple interactive 
bookkeeping and retrieval programs, such as for phone 
numbers, checking accounts and magazine subscriptions. 

Then will come the libraries. I think it is obvious that 
library service is the frontier of consumer applications, and 
that few computer people see what this entails in all its 
magnitude. 

A few years from now many people—later 
“everybody”—will have a computer terminal. But not just a 
slow old printer: a fast, high-performance vectoring CRT, 
which is cheaper to make and simpler to use. Writings can 
then be stored in full-text digital form, and readers will have 
highly responsive consoles—preferably of the vector-display 
type, permitting the text to move smoothly at any speed 
under throttle control. 

But merely supplying text to the reader’s screen is hardly 
enough. Not only must your library-CRT system supply vast 
quantities of text at any usable rate of speed; it should also 
bring capabilities which are not now available in the best 
libraries. More about that later. 

User actions must have immediate results, preferably 
under three seconds. This means computer capability in the 
terminal, as well as some local mass memory. Now, com¬ 
puter mainframes—the processor chips—will cost very 
little; likewise core (or RAM chips) will be cheap as dirt; but 
there will always be fast expensive memory and slow cheap 
rpemory. Thus for cost reasons the common notion of “core 
being cheap enough so we can have everything in all the 
time” is forever absurd. The system must come to grips 
with this great truth, in terms of managing large multilevel 
stores on small machines. 

Similarly, “whole libraries” cannot be stored at the user’s 
terminal, but must be rapidly accessible through com¬ 
munication lines on demand. It follows that the system will 
use computers in a net. These need not be big computers, as 
they are to be used only for storage and distribution—com¬ 
munications processors. Thus we come to the notion of a 
network of minicomputers. But the simplest and most 
elegant approach is to have all units on the network—user 
nodes and communications processors—use essentially the 
same program. 

This is the fundamental idea of the system. 
Now, when you say “library,” computer people say, “Ah, 

yes! The Encyclopedia Britannica and Moby Dick.” But we 
need to do more than rapidly deliver linear text. It is my 
working belief that linear format is not the best organization 
for anything, but is forced on us by the constraint of printing 
on paper. The real use of information by people, for a 
spectrum of uses involving everything from CAI to IR, will be 
best served by new non-linear forms of writing, generically 
called hypertext. I have discussed this elsewhere. 

Theodor H. Nelson, Computer Lib (published by the author; 
available from Hugo’s Book Service, Box 2622, Chicago IL 
60690). See esp. pp. 85-70. 

This is not clear to many people, because they are so used 
to linear writing—but our use of writing is rarely beginning- 
to-end linear, and neither are the thoughts that have been 
pressed into linear sequence. 

Indeed, ordinary writing (ignoring illustrations for the 
moment) is only quasi-linear. While the author gives us a 
principally linear string, there are also little jum- 
pouts—usually footnotes, sometimes “boxes” and 
headlines—that break out of linear format and permit the 
reader to pursue matters he guesses to be attached there. 
The succession of points and cross-references in a document 
are seldom linear. Moreover, we do not ordinarily read in 
linear sequence; and after we have read something, what 
remains in our minds is rarely linear either. 

But to recognize this is just the beginning. When we 
acquire a high power non-linear text capability, considerable 
research and inspiration will be needed to find the best forms 
of non-linear organization for writing. 

Very well; we must supply fast-access, non-linear library 
services. But even that is not enough; we want also to 
provide users with various helpful features for their own 
reading and note-taking. For instance, placemarkers (to 
work like bookmarks), allowing instant jump to things a user 
has previously flagged; and software allowing users to make 
marginal notes. 

This leads to an interesting compound capability. Not only 
can an author create materials in complex non-linear 
document form, but a reader can incorporate such a non¬ 
linear document in a complex of his own comments, an¬ 
notations and additions. Now this is a curiously involved 
outlook. Such compound linkages are not like anything seen 
usually in the computer world. But that doesn’t mean it has 
to be disorderly. While the notion of infinite cross-coupling 
unnerves some people, it may be kept orderly. Whatever the 
complexity of the author’s original version, and whatever the 
complexity of the user’s linkages and even modifications, an 
orderly systems approach can keep it all systematic and 
sensible. 

Page 23 



The fundamental way of keeping all this straight is with a 
concept implemented basically in the system. Namely, 
every document has an author, who owns it and is the only 
one who may change it. Each reader’s version, containing 
links and modifications of his own creation, belongs to 
him—except for the parts showing through from some other 
original. In other words, the concept of authorship is to be 
scrupulously preserved, as well as the author’s canonical 
version or versions. These provide the anchor for a number 
of interesting services. 

I expect that the roles of writer and reader will remain as 
they always have been, and so will their motivations: for the 
authors, money and respect (sometimes fame); for read¬ 
ders, orientation and background information, the answering 
of questions, the enhancement of general knowledge, self- 
improvement, the pursuit of interests, entertainment and 
fiction. 

To further this general idea, an unusual system of 
proprietary techniques has been developed for the storage, 
linking, retrieval and editing of large non-linear documen¬ 
tary structures. The intention is to use this retrieval sub¬ 
system as a basis for a product line, beginning with a simple 
text editor (slated for 1976), and working up to the full 
system. We have discovered certain structures and 
techniques we consider fundamental and highly 
generalizable. Although our data structures and algorithms 
were designed for the library network application I have 
described, it may be possible for this system to have ap¬ 
plications in more “practical” environments. For instance, 
it is possible that a whole package may be marketed as a 
virtual-memory data-base add-on for regular general- 
Durnose setuDS. 

I have been frequently criticized for saying what this 
system will do without either showing it or telling how; in 
this situation I am somewhat like Frank Marchuk, the man 
who says he has a “laser computer.” But I know that a few of 
you are interested in keeping track of the system prior to its 
actual appearance, and these remarks are for your benefit. 

The system under implementation has several properties 
of note. 

A single system is complete: from the minicomputer the 
user may access and revise files of any size, provided they 
are on local storage. 

A plurality of units automatically becomes a network when 
hooked together, with each processor looking to the other 
processors merely like a terminal that wants access to a file. 

“Linked text” may be thought of as the canonical storage 
type of this system; but properly understood, linked text can 
be anything. The system holds strings of any length (up to 
total hardware limit — with no access penalty for length); 
and tables and arrays, either thick or spares. (An element of 
an array can be a superlong string.) Between elements there 
may also be links; such links may be modal, and defined and 
flagged arbitrarily. 

A file, or organized collection of data, is stored as what we 
may call a hyperblock—a virtual structure of potentially 
great size whose parts may nevertheless be rapidly ac¬ 
cessed. (For optimization in nonliterary applications, there 
is a certain leeway in the declaration of preferred access 
methods and classess of path. But this will be discussed at a 
future time.) 

The problem of “data integrity,” especially under the 
multiple ingressions of inquiry and update, has been cited as 
one reason for needing big computers. This is otherwise 
settled in the present system. Our approach is that every file 
has a current hardware captair., which can be any computer 
in the network. Only one computer is at any time the captain 
of a file, and it will process no more ingressions until all vital 
updates have been made. 

Certain postponements of update are possible. Catching up 
with these is background to the foreground features of 
display, retrieval and edit. The rapidity of certain 
astonishing events is actually sleight-of-hand. Certain 
“instantaneous” complex events are actually not completed 
at the moment they appear to be, but they are in an update 
pipeline, and their far-flung ramifications are actually 
consummated in a system of ripples propagated through the 
file as a background task. The system is thus slightly marred 
by, ahem, catchup stains. 

In describing this system, I have left for last the parts I find 
most interesting, those which lead to the one idea I wish to 
present. Let me describe several unusual facilities this 
system is intended to have for non-linear writing. 

One is the facility for collateration, or the multipoint 
linkage between two text units. This resembles (and can be 
used like) marginal notes or commentary between two texts, 
or for various other purposes. 

Another is the facility for quote-windowing. This is a very 
interesting and unusual capability, around which I expect 
some remarkable uses to evolve. 

The idea is that one piece of text can have a quotation from 
any other piece of text in the system. But it is not merely a 
quotation. The quoted text is actually still sitting in its own 
file; the user reading the quote is actually at that location in 
the quoted file, as well as still being at that location in the 
quoting file. In other words, a directional splice-point exists 
from the quoting file into the quoted. 

The main purpose of this is, of course, so that the reader 
may, should it please him, transfer into the quoted file and 
stay there. 

Scholars should find this useful for checking sources. A 
researcher looking for something may use it to go from a 
vaguely relevant source to a more exactly relevant one. The 
quote-windowing facility also provides a way that an an¬ 
thologist, writer or correspondent can provide his reader 
with instantaneous entry to a number of things he thinks the 
reader ought to see. And, finally, it suggests an interesting 
solution to the copyright problem: since the quoted material 
is never put into another file, it can be a simple matter to 
count and pass on royalties everytime that file is entered by a 
user. 

While this windowing function is most easily described for 
text, it is intended to apply to graphics as well. Thus one 
“picture” from the library may contain a “window” into 
another picture from the library, ad infinitum. These ex¬ 
cerpted pictures may even be animated. 

Very well. I have described an unusual system now un¬ 
dergoing implementation, both to show the point of view I’m 
starting from, and to initialize certain ways of thinking. The 
application of this Windowing philosophy to business 
programming may turn out to be rather interesting. 

Now recently, on the basis of this background, I had cause 
to think about The Business Problem. The stimulus was the 
June 30, 1975 issue of Business Week, which offered an 
“executive briefing,” whatever that is, on “the office of the 
future,” whatever that is. The Office of the Future as they 
described it—especially as a marketing concept advanced by 
a major manufacturer for mechanized typing pools—was so 
appalling, bleak and absurb that no thinking man could 
contemplate it without a shudder. 

Business Week, “Putting the Office In Place,” June 30,1975, 
pp. 56-70. 

The general view was this: the Office of the Future will be 
sharply divided between peons and executives. The peons 
will be typing clerks who have been taught to work such 

Page 24 



“word processing” gizmos IBM’s mag tape and mag card 
typing machines. The peons will be herded into central 
typing pools, where they will finger in what the executives 
dictate. Only a few lucky secretaries, the real smarties, will 
escape this fate. Lucky them, they will get to file the paper 
that the Executives dictate and the Peons finger. 

Now, this is so wrong and awful it needs no direct reply. 
Let me speak instead about how things should be. Let’s talk 
about how computers should work, and call it ten years from 
now to keep your minds off implementation problems. 

Look, isn’t it obvious? There should be a general system of 
some kind, and everybody should have a display terminal. 
Your job determines what you may or may not see or change. 

For each job there are clear and simple interactive 
programs—let us call them “workfaces”—for all the things 
to be done. One person may have access to dozens of work- 
faces, and the choice, perhaps, of which workface he prefers 
for a given problem. The workfaces are clear and simple. 
Some are more general than others, like the workface that 
helps you type in a letter or a memo. 

There is no paper anywhere, except for letters which 
arrive from elsewhere or those which finally leave the office. 
All putters-in of information have clear and simple in¬ 
teractive programs to help them. Moreover, all info-dippers, 
too, have simple and clear interactive programs to help 
them. But this distinction, long with us, will erode: probably 
every job definition in the future will include input, viewing 
and revision. 

Good interactive programs for everybody will enable and 
encourage us to use our minds better. It is my belief that 
people will turn out smarter, happier and more productive in 
a system where they understand what they are doing, and 
are encouraged to use their minds. 

So much for the preamble. I will now endeavor to express 
the one thought with which this talk is concerned. 

Let us suppose that I am generally correct about what the 
office of the future should be like. Let us further suppose that 
a data system such as the one I described earlier—holding 
vast quantities of stuff on a network of minis with big 
secondary storage—is feasible. How then can we put this 
righteous Office of the Future up on it? 

Earlier I made a couple of major points about such a 
future. 

First. Central to this view was the notion of future life 
being organized around big files of text and graphics, stored 
in distributed form on a network of minicomputers. 
According to this idea, information may be thought of as 
making up big “documents” of one sort or another, 
especially text but also graphics. 

Interactive business systems, too, can be defined in terms 
of “documents.” If everyone in the business is to have a 
screen terminal, written clarifications will be needed for 
most types of data. Let us consider, then, a hypothetical 
business system that consists of a long written report on the 
state of the business—with windows that can show the 
changing summary figures, status information on outgoing 
and incoming orders, sales reports and prospects; and so on, 
for every facet of the business. (We will overlook here the 
problems of security and restricted access, but these are 
naturally a part of the problem to cope with eventually.) 
Here, too, then, we have a virtual space which is also a vir¬ 
tual document, that is, a series of presentations with windows 
into the data. 

Now that document, some large part of which can be 
text—a sort of standing, up-to-the-minute corporate report 
—has “distances” in it. Relative “distance” in the data 

structure is the key concept. For instance, the two elements 
at the ends of a long text string are far apart, and will not 
ordinarily be held in core at the same time. A customer’s 
name and i.d. number, however, are as close as two things 
can get; his address and phone number, are presumably at 

one removed (requiring the following of a pointer), and the 
salesman’s comments on his purchasing prospects 
somewhat further away (requiring both pointer and lock- 
words). 

Now, it seems to me that things are still too complicated in 
this field. Data base programming should be no big deal and 
should be virtually taken care of by the operating system; 
defining the data types and their access chainings should be 
about equivalent in complexity to a Sysgen. Now, as I en¬ 
vision it, the data base system would have certain given 
characteristics any programmer can learn in a hurry. 

Because core is small, the programmer declares what 
forms of information will need to be considered together. He 
declares access paths between types of information, such as 
what kind of thing points to what and what has to be found 
independently (such as alphabetically or by number). Things 
are either in core together or not, directly accessible or 
farther away, and so on. 

Second. You will recall that I also said the key to such a 
data network was the use of staged update. While the system 
always has instantaneous integrity, it is not always caught 
up. That is, various temporary mechanism take note of 
whatever changes the user invokes on the data, whereupon 
the system replies, “It is done—” but the actual meaning is, 
it is as good as done. Finalization of the changes in canonical 
stored form occurs gradually thereafter. But meanwhile, all 
inquiries see only the current virtual structure, as 
ingeniously declared in various exceptions and memoranda 
in the system. 

I submit that the way to make this distributed-mini office 
of the future work is a simple development of the same idea. 
The data base is to be a staged system. Rather than con¬ 
summate all the consequences of each input keystroke—an 
obviously absurd extreme alternative to the batch ap¬ 
proach-inputs are accumulated in partial forms. These 
partial-products are assimilated to the data base and con¬ 
summated either in the course of events or as demanded. 

But demand is in the form of user requests to look at 
something. As in the previous system, wherever he looks, it 
appears to be finished. 

As the user gets near something, the appropriate crunches 
begin. The procedures of final data consummation are done 
in catchup mode, clued by the user’s present location. This is 
rather like burglars peering at a night watchman on his 
rounds. 

In other words, the programmer, in the course of preparing 
an interactive system or “workface,” ascertains what 
partially-processed data must be further refined for a given 
user activity; these catchup actions are then cued as the user 
approaches places where these results will be needed. 

Now, this is rather interesting from a computer-science 
point of view. Places invoke procedures. A user’s arrival at 
specific places in the user space means actions on the data. 

Obviously it would be senseless for each individual routine 
to test where the user is; every routine would have to be 
called in all the time to see if it were needed. Obviously, 
instead the general monitor tests where the user is, and in¬ 
vokes the routines called for by the user’s pos^ion. But that 
means there has to be a table of what routines occur at what 
places. 

This means in turn that a table of program cues must be 
compiled from the total collection of all catchup procedures, 
so that those affected are appropriately notified by the user’s 
position. This calls for a sort of backwards compiler—let’s 
call it a Relipmoc—that assembles such a lisV^and associates 
or inserts it in the appropriate places. 

Now obviously there is a problem. It will readily be seen 
that certain contentions will occur. Certain “places” in the 

Page 25 



system, as it evolves, may come to trigger too many separate 
actions. 

There are two major lines of solution. Programming staff 
may have some political procedure of arbitration that 
decides among the candidate procedures, such as the ar¬ 
bitrary decision of the lead programmer. 

Or steps may be taken to control the user’s movement, 
slowing him down when there are too many things to be done. 
If the catchup time for a given function is longer than it will 

take the user to get there, various delaying techniques may 
be employed which keep the user occupied until he’s ready. 
Indeed, usefully occupied. If need be, we can delay the user 
with other things—entertainments or reminders of useful 
sorts—till what he wants is ready. (“Vamp till ready,’’they 
called it in vaudeville.) Or we may modify the “documen¬ 
tary” setting, with new writings—preambles, updates, and 
reminders that slow him down. 

(This is an example of one of the most interesting options 
of the man-machine system: the option of changing the 
user’s experience when the program can’t be done as 
originally intended.) 

Third. I have spoken of saving various keystrokes in 
preprocessed and summary form, as “partial products.” In 
the scheme envisioned here, the keystroke capture programs 
will update the partial prducts, and the display will invoke 
their final conversion and assimilation. 

Thus the major decisions to be made at the systems level, 
curiously enough, are those concerned with the form and 
content of such partial products. They will of course include 
sums, transactions (such as the latest news about whether a 
specific invoice gibed with an incoming delivery), and up¬ 
dates to individual records. I will admit that the weakest 
part of the scheme lies here: in the practicality of the half- 
deferred update for general cases. I simply pass the idea on 
to you, who understand more about business programs. 

So much for my one thought and its possible ramifications 
for business programming. Through these proposed 
mechanisms we get our keenly responsive, people-oriented 
office of the future. I assume here, of course, the.availability 
of a high-performance retrieval system roughly like that 
already discussed, whose principal foreground task is in¬ 
teractive display. I also assume that people’s time is more 
valuable than computer time, and the computer must do its 
“work” at times most convenient for its users. 

Obviously the programmer’s task has changed. Rather 
than living the batch life, or even the usual database life, in a 
way he now scuttles in shadows. His function is to implement 
the desired user experiences, not to dictate. 

But there is still work for programmers. This consists of 
declaring the database (roughly a one-shot deal); and, to 
service the users, the creation of the workfaces. This in turn 
requires programming to and from the partial products by 
whatever transformation techniques seem most appropriate. 

In all this the user’s experience is central. When the 
techniques must be traded off against user experience, it is 
the experience that counts, not programming convenience. 

It is this curious tradeoff that has made me coin the term 
“fantics” for the art and technology of showing things to 
people. I believe this is the correct generic term under which 
interactive programming falls. I have been criticized for 
making the term too broad. Yet this is all an indivisible 
whole, and if we narrow the discussion to a smaller part, such 
as computer graphics, we overlook both the overall effects of 
what we do and the options we might have tried. “Fantics” is 

a single tradeoff domain. We can present the same things on 
paper, on screen or by ear (or using the techniques of 
Madison Avenue, as a joke, in a song or a playlet); we can 
have the user point with a light pen, type on a keyboard, tap 
his feet or whistle. 

These options are none of them right or wrong. It is how we 
tie them together that is good or bad, clear or confusing, 
dreary or fun. 

Programmers are very goal-directed, sometimes too 
narrowly. There are different kinds of goal-directedness. A 
truck driver, or tank corps commander, is given an objective 
and perhaps a few limitations on what he may do to get there. 
I submit that where users’ convenience is concerned, that is 
not the right kind of goal-directedness. 

Consider the goal-directedness of a stage director: his 
objective is not merely to move the actors in and out and 
have them speak the correct lines; that is just the beginning. 
His objective is to create a gratifying overall experience for 
the people out front, merging the talents and facilities that he 
has available. This kind of goal has not single event, with 
Boolean success or failure as its culmination, like driving a 
truck to Detroit or computing pi to a million places. The goal 
is a series of events, each of which can be carried off well or 
pooriy, each of which can gratify or annoy, and which finally 
result in somebody else feeling bad or good. 

That feeling may be the only purpose, as in game programs 
and computer-controlled artistic events. More often the 
user’s feeling is a byproduct, as in a hospital sign-in system; 
but that makes his feeling good no less of a goal. Few 
organizations today are unconcerned with the morale of their 
members and their clients. If you insult a user, confuse him, 
make him feel inferior or bore him, good will has been lost 
that will undercut all the other goals of the system. 

The programmer may look at his job narrowly, and 
pretend he is only driving a truck to Detroit. He may even 
convince himself (and his supervisor) that making a mare’s- 
nest of code run “correctly” is all there is to be done. But it 
isn’t so. 

The interactive programmer should understand that the 
mere computer is not the real focus of his work. He is 
working in idea-space. The feeling and the idea of the system 
to the user emerge from all the parts acting together. The 
user’s idea of what he is doing, and what he is doing it to; the 
constructs and the spaces he works with and in; the clarity of 
it all; these are generated in non-simple ways by the 
program. The computer is a paintbrush for a mural of ex¬ 
periences you are trying to give the user. 

Through the Magic Windows we give him, we want the user 
to see his Data Realms in bright sunshine. 

Page 26 



How to Write Correct Programs 
and Know It 

Harlan D. Mills 

(This paper was previously presented at the 1975 Inter¬ 
national Conference on Reliable Software and published in 
the Conference Proceedings. Permission has been granted 
by the conference for this paper to appear in these 
Proceedings.) 

Keywords and Phrases. Structured programming, program 
correctness, programming practices. 

Abstract. There is no foolproof way to ever know that you 
have found the last error in a program. So the best way to 
acquire confidence that a program has no errors is never to 
find the first one, no matter how much it is tested and used. 
It is an old muth that programming must be an error-prone, 
cut-and-try process of frustration and anxiety. The new 
reality is that you can learn to consistently write programs 
which are error free in their debugging and subsequent use. 
This new reality is founded in the ideas of structured 
programming and program correctness, which not only 
provide a systematic approach to programming but also 
motivate a high degree of concentration and precision in the 
coding subprocess. 

Introduction 
An Old Myth and a New Reality. It is an old myth that 

programming must be an error prone, cut-and-try process of 
frustration and anxiety. The new reality is that you can 
learn to consistently write programs which are correct ap 
initio, and prove to be error free in their debugging and 
subsequent use. 

By practicing principles of structured programming and 
its mathematics you should be able to write correct 
programs and convince yourself and others that they are 
correct. Your programs should ordinarily compile and 
execute properly the first time you try them, and from then 
on. If you are a professional programmer errors in either 
syntax or logic should be extremely rare, because you can 
avoid them by positive actions on your part. Programs do 
not acquire bugs as people do germs - just by hanging around 
other buggy programs. They acquire bugs only from their 
authors. 

There is a simple reason that you should expect your own 
programs to be completely free of errors from the very start, 
for your own peace of mind. It is that you will never be able 
to prove that such a program has no errors in it in a foolproof 
way. This is not because programs are so complex that it 
isn’t worth the effort; it is because there simply is no human 
way - logical or mathematical - to prove it, no matter how 
much effort you might put into it. 

The ultimate faith you can have in a program is in the 
thought process that created it. With every error you find in 
testing and use, that faith is undermined. Even if you have 
found the last error left in your program, you cannot prove it 
is the last, and you cannot know it is the last. So your real 
opportunity to know you have written a correct program is to 
never find the first error in it, no matter how much it is in¬ 
spected, tested, and used. 

Now the new reality is that professional programmers, 
with professional care, can learn to consistently write 
programs which are error-free from their inception - 

programs of twenty, fifty, two-hundred, five-hundred lines, 
and up Just knowing that it si possible is half the battle. 
Learning how to write such programs is the other half. And 
gaining experience in writing such programs, small ones at 
first, then larger ones, provides a new psycholigical basis for 
sustained concentration in programming, that is difficult to 
imagine without direct personal experience. Professional 
programmers today are producing code at the rate of one 
error per year in their finished work; that performance is not 
possible by cut-and-try programming. The professional 
programmer of tomorrow will remember, more or less 
vividly, every error in his career. 

What is a Correct Program? Cut-and-try programming 
faces three kinds of difficulties. 1. Specification cahnges. 2. 
Programming errors. 3. Processor discrepancies. A 
correct program defines a procedure for a stated processor 
to satisfy a stated spcification. If you don’t know what a 
program is supposed to do, or don’t know how the processor 
is supposed to work, you can’t write a correct program. So 
we presume a known specification and a known processor 
throughout. Even so, a practicing programmer must be 
preapred to deal with incomplete and changing 
specifications, and with processors which behave differently 
than their manuals say. For those difficulties we have no 
systematic remedy, except for radical reducations of 
programming errors which can help isolate difficulties in 
these other areas. Nevertheless, the usual experience in 
programming often fails to separate these three sources of 
difficulty, so that programming errors - lumped in with 
everything else - seem much more inevitable than they 
really are. 

Writing correct programs does not mean you can write 
programs once and for all. It means you can write programs 
to do exactly what you intend them to do. But as intentions 
change, program changes are required as well. The same 
opportunities and peinciples apply to these program 
changes. You should be able to modify programs correctly, 
if they are well designed and explained, as well as write 
them correclly to begin with. 

This distinction between correctness and capability is 
critical in understanding this new reality. Determining what 
a program should do is usually a much deeper problem than 
writing a program to do a predetermined process. It is the 
latter task that you can do correctly. For example, you 
might wish to program a world champion chess player - that 
is a matter of capability, and a problem you may or may not 
be able to solve. Or you could wish to program a chess 
player whose move has been determined for every situation 
that can arise. You can write such a program correctly, but 
whether or not it becomes a world champion is another 
matter. 

The Difficulty with Correctness Proofs. W e begin with a 
fundamental difficulty, which may seem fatal to our ob- 

Page 27 




