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Rational Constructive Analysis 

J. R. Geiser 
July 3, 2018 

Introduction 
Using Alexander Yessenin-Volpin's theory of constructions [Volpin 1968]1, 
[Geiser 1975]2 in which the natural numbers are considered as an unfolding 
process over time, it is possible to develop a purely finitistic version of 
real analysis using only rational numbers. By employing an intuitionistic 
tense logic and a parameter 𝑧 for a “large” natural number, infinitesimals can 
be introduced and the finitistic theory of real analysis developed along the 
lines of A. Robinson’s nonstandard analysis [A. Robinson, 1966]3. The notion 
of a “very large” natural number is defined relative to a particular finite 
set ℘ of proofs and calculations, so that 𝑧 represents a natural number that 
has not yet arrived and is larger than any integer needed for the completion 
of the proofs and calculations in ℘. The notion “very large” is made precise 
axiomatically and in the Soundness Theorem of Section II of this paper.  

I have called the resulting theory Rational Constructive Analysis (𝑅𝐶𝐴). Even 
though 𝑅𝐶𝐴 borrows some of the strategies of Robinson in the use of the 
concept of infinitesimals to do real analysis, it is entirely constructive and 
essentially finitistic. It also bares a strong relation to Mycielski's theory 
FIN [Mycielski, 1981]4 which he has proposed as a possible finitization of 
classical analysis. Taking off from Mycielski, Juha Ruokolainen [Ruokolainen  
2004]5 has developed a very interesting, purely finitistic, constructive 
version of nonstandard analysis with a transfer principle permitting the 
elimination of special constant terms ∞(, 𝑝 a rational number, that act as 
proxies for infinitely large numbers whose inverses can act as infinitesimals 
ala Robinson. 

The original development of RCA [Geiser 1981]6 was presented at the New 
Mexico State University Conference on Constructive Mathematics in 1980. 
The present paper is based on an extensive revision and expansion of that 
work.   

In Section I, an intuitionistic theory of rational numbers including a tense 
operator ∆ is presented, augmented by certain predicates that allow one to 
express a notion of infinitesimal numbers as the reciprocals of “very large” 
numbers. The logical framework of 𝑅𝐶𝐴 is a first order intuitionistic tense 
logic. Section II provides a semantics for 𝑅𝐶𝐴 synthesized from Kleene's 
recursive realizability [Kleene, 1945]7 and a version of Kripke [Kripke 1968]8 
semantics for tense logic. The main result of this section is Theorem II.1, a 
conditional Soundness Theorem for 𝑅𝐶𝐴. Section III provides a representation 
of the continuum using infinitesimal rationals and begins the development of 
real analysis. 

There are three features of the resulting mathematics worth noting at this 
point. First, only the (finite) natural numbers and the corresponding rational 
numbers are used. There is no reliance on infinitary non-standard models of 
arithmetic. Second, the occurrences of the tense operator ∆ ("it will be the 
case that") in mathematical statements provides a specific bound on the 
computational resources underlying their numerical and logical content. The 
third feature concerns the natural number parameter 𝑧 which acts as an 
uninterpreted constant term in 𝑅𝐶𝐴 performing the role of a “large” natural 
number. In carrying out computations and proofs in 𝑅𝐶𝐴, one can assign a 
natural number value 𝜁 to the parameter 𝑧 in all of its occurrences forming a 
system 𝑅𝐶𝐴+. If 𝑃 is a proof in 𝑅𝐶𝐴, then 𝑃+ denotes the proof in 𝑅𝐶𝐴+ that 
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results from the replacement of all occurrences of 𝑧 by 𝜁, the constant in the 
language of RCA representing 𝜁. Actual computations and proofs in 𝑅𝐶𝐴 thus 
transformed can be safely performed if the computations and proofs don’t 
violate the conditions of the Soundness Theorem of Section II. Depending on 
the ∆ embedding depth (∆ − 𝑑𝑒𝑝𝑡ℎ) of the computations and proofs to be carried 
out, the Soundness Theorem requires, in general, that, although finite, 𝜁 must 
be extremely large. However, if the requirements of the Soundness Theorem are 
not observed, then for any particular natural number 𝜁 assigned to 𝑧, one can 
easily describe how to construct a proof in 𝑅𝐶𝐴+ of a contradiction whose 
length is proportional to 𝜁*.

                         
* The contradiction in 𝑅𝐶𝐴+ can be established as follows. 𝑅𝐶𝐴 contains a 
predicate 𝐾 which is interpreted as a finite segment of “arrived” natural 
numbers. One can straight forwardly construct in 𝑅𝐶𝐴, for any natural number 
𝑛, a proof 𝑃6 of ∆6𝐾(𝑛) of ∆–𝑑𝑒𝑝𝑡ℎ = 𝑛 (the ∆ embedding depth of the proof 𝑃6.) 
∆6 denotes the 𝑛-fold iteration of ∆ and 𝑛 is the constant term of 𝑅𝐶𝐴 
corresponding to 𝑛. Secondly, for each natural number 𝑛, one can construct a 
proof 𝑄6 of 𝐾<𝑛= ⊃ 𝑛 < 𝑧 of ∆ − 𝑑𝑒𝑝𝑡ℎ = 0. By applications of tense logic rules for 
∆-Introduction and ∆-Distribution, for each natural number 𝑛, one can 
construct a proof 𝑅6 of ∆6𝐾(𝑛) ⊃ ∆6<𝑛 < 𝑧= of ∆ − 𝑑𝑒𝑝𝑡ℎ = 𝑛. Applying Modus Ponens 
to the end wffs of the proof 	𝑃6 and 𝑅6 we get a proof 𝑆6 of ∆6<𝑛 < 𝑧= of ∆ −
𝑑𝑒𝑝𝑡ℎ = 𝑛. If the parameter 𝑧 is interpreted by a natural number 𝜁 and 𝑧 is 
replaced in these proofs by the constant 𝜁 then we can construct a proof 𝑆+

+ in 

𝑅𝐶𝐴+ of ∆+ C𝜁 < 𝜁D of ∆ − 𝑑𝑒𝑝𝑡ℎ = 𝜁. But in 𝑅𝐶𝐴 we can also construct a proof 𝑃 of 

¬∆+(𝑧 < 𝑧) of ∆ − 𝑑𝑒𝑝𝑡ℎ = 𝜁 so that 𝑃+ is a proof in 𝑅𝐶𝐴+ of ¬∆+ C𝜁 < 𝜁D. This is 
related to the paradoxes of predicates like “X is bald”, “n is not a large 
number”, etc. 

There are several things to note about this “argument”. First of all, when the 
substitution of 𝜁 for 𝑧 is performed, the resulting proofs, although they are 
in the language of 𝑅𝐶𝐴, they are no longer in the formal system 𝑅𝐶𝐴 because, 
for example, 𝐾<𝑛= ⊃ 𝑛 < 𝜁 is not derivable from the axioms of 𝑅𝐶𝐴, for arbitrary 
natural numbers n. Secondly, the sketched proof of this contradiction does not 
meet the requirements of the Soundness Theorem (Section II). This theorem 
would require that the natural number 𝜁 (greatly) exceed the ∆ − 𝑑𝑒𝑝𝑡ℎ of the 
proofs in question. The Soundness Theorem guarantees that the end-wff of a 
proof 𝑃 has an interpretation if, among other things, the interpretation of 𝑧 
is greater than 𝐹(∆(𝑃)) where ∆(𝑃) is the ∆ − 𝑑𝑒𝑝𝑡ℎ of 𝑃 and 𝐹 is a specified, 
rapidly increasing function. 

While the proofs in 𝑅𝐶𝐴 can be converted into proofs in 𝑅𝐶𝐴+, the reverse is 
easily shown not to be true. Putting aside the inconsistency of 𝑅𝐶𝐴+ for a 
moment, if the choice of 𝜁 is an even integer, then we can provide a perfectly 
fine proof of ∃𝑥(𝑁(𝑥) ∧ 𝜁 = 2 ∗ 𝑥) in 𝑅𝐶𝐴+ (which includes Intuitionistic Peano 
Arithmetic) where 𝑁 is a predicate denoting the natural numbers. But ∃𝑥(𝑁(𝑥) ∧
𝑧 = 2 ∗ 𝑥) is not provable in 𝑅𝐶𝐴. This follows from the Soundness Theorem of 
Section II. 
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Part I The Formal Systems  

I will introduce three formal systems. Rational Arithmetic (RA) is an 

intuitionistic first order theory of the rationals with an embedded theory of 

Arithmetic. The formal system Rational Constructive Analysis (RCA) extends RA 

to an intuitionistic first order tense logic together with a new predicate 

symbol 𝐾(𝑥) ("feasible" or "standard" natural number), a function ℱ(𝑥) under 
which 𝐾 is "closed", and a parameter 𝑧 denoting a "very large" natural number. 
It is in this system that I shall develop the mathematics of RCA. The third 

formal system, the RCA Modeling System (RCAMOD), provides the basis for the 

semantics for RCA that is developed in Part II. 

I begin by presenting the logical axiom schemata and rules of inference for 

intuitionistic predicate calculus and tense logic. 𝐴, 𝐵, 𝐶 denote arbitrary 
wffs, 𝑥, 𝑦 any variables, and 𝑡 and 𝑠 any terms. 𝐴QR denotes the substitution 
of all free occurences of 𝑥 in 𝐴 by the term 𝑡. 𝑛, 𝑚, 𝑝, 𝑞 will denote natural 
numbers. 𝑛 will denote the standard representation of 𝑛 as a rational (i.e., 
(1 + ⋯+ 1)/1.) 

Axioms for Intuitionistic Predicate Calculus (IPC) 

Axiom Schemata for IPC 

I1,2,3  𝐴 ∧ 𝐵 ⊃ 𝐴, 𝐴 ∧ 𝐵 ⊃ 𝐵, 𝐴 ⊃ 𝐵 ⊃ ((𝐴 ⊃ 𝐶) ⊃ (𝐴 ⊃ 𝐵⋀𝐶)). 

I4,5,6  𝐴 ⊃ 𝐴⋁𝐵, 𝐵 ⊃ 𝐴⋁𝐵, (𝐵 ⊃ 𝐴) ⊃ ((𝐶 ⊃ 𝐴) ⊃ ((𝐵⋁𝐶) ⊃ 𝐴)). 

I7,8,9  𝐴 ⊃ 𝐴, 𝐴 ⊃ (𝐵 ⊃ 𝐴), (𝐴 ⊃ 𝐵) ⊃ ((𝐴 ⊃ (𝐵 ⊃ 𝐶)) ⊃ (𝐴 ⊃ 𝐶)). 

I10,11,12 𝐴 ⊃ (¬𝐴 ⊃ 𝐵), (𝐴 ⊃ 𝐵) ⊃ ((𝐴 ⊃ ¬𝐵) ⊃ ¬𝐴), <𝐴 ⊃ (𝐵 ∧ ¬𝐵)= ⊃ ¬𝐴. 

I13   ∀𝑥𝐴(𝑥) 	⊃ 𝐴(𝑡), 𝑡 is free* for 𝑥 in 𝐴. (UI) 

I14   𝐴(𝑡) ⊃ ∃𝑥𝐴(𝑥), 𝑡 is free for 𝑥 in 𝐴. (EG) 

I15   ∀𝑥(𝐴 ⊃ 𝐵) ⊃ (∀𝑥𝐴 ⊃ ∀𝑥𝐵). 

I16,17 ∀𝑥(𝐴 ⊃ 𝐵) ⊃ 	 (𝐴 ⊃ ∀𝑥𝐵), ∃𝑥(𝐴 ⊃ 𝐵) ⊃ (𝐴 ⊃ ∃𝑥𝐵), 𝑥 is not free in 𝐴. 

I18   𝑡 = 	𝑠	 ⊃ (𝐴(𝑡) ⊃ 	𝐴(𝑠)), 𝑠 and 𝑡 are free for 𝑥 in 𝐴(𝑥). 

I19   ∀𝑥(𝑥 = 𝑥). 

I20   ∀𝑥𝑦	(𝑥 = 𝑦 ∨ ¬	𝑥 = 𝑦). 

                         
* As usual, we define a term 𝑡 to be free for 𝑥 in wff 𝐴 if no free occurrence 
of 𝑥 in 𝐴 is within the scope of a quantifier of a variable free in 𝑡. The 
expression “𝐴(𝑡)" designating the substitution of term 𝑡 for variable 𝑥 in 𝐴(𝑥) 
is equivalent to 𝐴RQ in which each free occuence of x in A is replaced by the 
term 𝑡. 



 

4 
 

IPC Rules of Inference 

MP Modus Ponens: 
_		_⊃`

`
 

UG  Universal Generalization: 
_(R)
∀R_(R)

 

IPC Derived rules of inference 

⊃ 𝑇𝑟𝑎𝑛𝑠 Transitivity of implication: 
	_⊃`			`⊃d

_⊃d
 

UI Universal Instantiation: 
∀R_(R)
_(Q)

, 𝑡 is free for 𝑥 in 𝐴. 

= 𝑆𝑢𝑏 Substitution of equal terms: 
	_(g)					ghQ

_(Q)
, 𝑠 and 𝑡 are free for 𝑥 in 𝐴(𝑥). 

Axioms for Tense Logic (TL) 

The expression ∆𝐴 is interpreted to mean that 𝐴 will be true at the next 
stage of the construction of the natural numbers. Note that the “next stage of 

the construction” extends the current segment 0,1, … , 𝑛 to 0,1, … , 𝑛, … , ℱ(𝑛) where ℱ 
a specified, increasing, natural number valued function. (The behavior of ℱ 
is specified in Axiom Group VI.) 

Note: we use the expression 𝐴 ≡ B as an abreviation for (𝐴 ⊃ 𝐵) ∧ (𝐵 ⊃ 𝐴). 

TL Axiom schemata 

∆1 (∆𝐴	 ∧ ∆𝐵) 	≡ ∆	(𝐴	 ∧ 	𝐵) 

∆2 (∆𝐴	 ∨ ∆𝐵) 	≡ ∆	(𝐴	 ∨ 	𝐵) 

∆3 (∆𝐴	 ⊃ ∆𝐵) 	≡ 	 ∆	(𝐴	 ⊃ 	𝐵) 

∆4 (∆	¬𝐴) 	≡ 	¬∆𝐴 

∆5 ∆∀𝑥𝐴(𝑥) ≡ 	∀𝑥∆𝐴(𝑥) 

∆6 ∆∃𝑥𝐴(𝑥) ≡ 	 ∃𝑥∆𝐴(𝑥) 

Axiom ∆5 and ∆6 can be interpreted as saying that the supply of terms to 

instantiate variables is not coupled to the temporal process under 

consideration. At the same time, a term doesn’t necessarily denote a presently 

occurring object. 

TL Rules of Inference 

∆I ∆ introduction 
_
l_
 

∆E ∆ elimination 
l_
_
 

∆I asserts the stability of correctness of proofs under passage into the (next 
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stage of the) future. ∆E can be paraphrased as follows: “if a mathematical 

assertion will be true then it must already be true,” or, “mathematical 

assertions are not contingent”, as is an assertion like “it is raining”. 

The tense operator 𝐺𝐴 meaning “𝐴 will hence forth be true” is not part of the 
language we will use to express temporality in RCA. On the other hand, if 

⊢od_ 𝐴, that is, if we can proof 𝐴 in RCA, then for every natural number 𝑛 we 
can show that ⊢od_ ∆6𝐴 by 𝑛 application of ∆I. However, in order for ∆6𝐴 to be 
meaningful in the realization semantics developed in Part II, 𝑛 must by an 
“arrived” natural number in a step-by-step production of natural numbers. 

By a formal system 𝐹, I shall mean the specification of a first order 
predicate language 𝐿 (possibly augmented with the temporal operator ∆), a 
class of axioms including logical axioms (IPC or IPC + TL) and non-logical 

axioms, and designated rules of inference (from IPC or from IPC + TL). Let 𝒢 
be a finite set of wffs of 𝐿. A formal proof 𝑃 from 𝒢 is a (finite) sequence 
{𝐴s, … , 𝐴6}* of wffs of 𝐿 which are either axioms of 𝐹 or members of 𝒢 or follow 
from previous wffs of 𝑃 by a rule of inference. If 𝐴 is the last wff of 𝑃 we 
write 𝑃: 𝒢 ⊢v 𝐴 or simply 𝒢 ⊢v 	𝐴 if 𝑃 is understood. 𝒢 contains the assumptions 
of 𝑃 but may contain other wffs as well. ⊢v 	𝐴 means there is a proof 𝑃 of 𝐴 
from the axioms of 𝐹, that is, 𝑃: {} ⊢v 𝐴. 𝑃: {} ⊢v 𝐴 may also written as 𝑃:⊢v 𝐴. 

Rules of Inference Schemata 

If the last wff 𝐴 of the proof 𝑃 from assumptions 𝐺	follows by modus ponens 
from 𝐵 and 𝐵 ⊃ 𝐴 we can extract two sub-proofs 𝑃s and 𝑃w and partition 𝒢 = 𝒢s ∪ 𝒢w 
so that 𝑃s: 𝒢s ⊢v 𝐵 and 𝑃w: 𝒢w ⊢v 𝐵 ⊃ 𝐴. 𝒢s and 𝒢w are not necessarily disjoint. 
Alternately, if we have two proofs 𝑃s and 𝑃w, 𝑃s: 𝒢s ⊢v 𝐵 and 𝑃w: 𝒢w ⊢v 𝐵 ⊃ 𝐴 we can 
effectively combine them into a single proof 𝑃 from 𝒢 = 𝒢s ∪ 𝒢w of 𝐴 where 𝐴 
follows by modus ponens and we designate this with the schematic: 

𝑃s: 𝒢s ⊢v 𝐵    𝑃w: 𝒢w ⊢v 𝐵 ⊃ 𝐴 
---+-------------------MP 

𝑃: 𝒢 ⊢v 𝐵 

or simply 

𝒢s ⊢v 𝐵    𝒢w ⊢v 𝐵 ⊃ 𝐴 
--+---------------MP 

𝒢 ⊢v 𝐵 

where the presence of the needed proofs are understood. 

                         
* We use the curly bracket to denote (ordered) sequences as well a finite 
sets. In any case, the latter come with an implicit ordering. Thus {𝐴s, … , 𝐴6} 
may denote a proof with 𝑛 steps or may denote a set with 𝑛 elements, as 
determined by context. 
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The other schematics that shall be used are: 

Universal Generalization 

⊢v 𝐴(𝑥) 
-------UG 

⊢v ∀𝑥𝐴(𝑥)       

∆ Elimination 

⊢v ∆𝐴 
----∆E 

⊢v 𝐴 

∆ Introduction 

⊢v 𝐴 
----∆I 

⊢v ∆𝐴 

Derived Rules of Inference Schemata 

Transitivity of implication 

⊢v 𝐴 ⊃ 𝐵    ⊢v 𝐵 ⊃ 𝐶 
---+--------------⊃ 	𝑇𝑟𝑎𝑛𝑠 
⊢v 𝐴 ⊃ 𝐶 

Universal Instantiation 

⊢v ∀𝑥𝐴(𝑥)     
---------UI (𝑡 is free for 𝑥 in 𝐴)   
⊢v 𝐴(𝑡)     

Substitution 

⊢v 𝐴(𝑠)      ⊢v 𝑠 = 𝑡 
---+-------------= 𝑆𝑢𝑏 (𝑠 and 𝑡 are free for 𝑥 in 𝐴(𝑥))   
⊢v 𝐴(𝑡) 

In an obvious way, each proof schemata can be associated with an effectively 

calculable proof transform 𝒯, that is an effective map from 𝒫v → 𝒫v or from 
𝒫v × 𝒫v → 𝒫v, where 𝒫v is the class of proofs in formal system F. 

More formally, each schemata is associated with a rule ℛ of inference (e.g., 
MP, UG, ∆I, etc.) and each such ℛ is associated with an effectively 
calculable transformation 𝒯ℛ:𝒫v → 𝒫v or 𝒯ℛ:𝒫v × 𝒫v → 𝒫v. Then the association of 
proof schemata with proof transforms can be illustrated by: 

𝑃: ⊢v 𝐴 
------ℛ 
𝒯ℛ(𝑃): ⊢v 𝐵 
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and 

𝑄s: Gs ⊢v 𝐴   𝑄w: Gw ⊢v 𝐵 
--------+---------ℛ 
𝒯ℛ(𝑄s, 𝑄w): Gs ∪ Gw ⊢v 𝐶 

Typically we will leave out mention of the transform and write, for example: 

𝑄s: Gs ⊢v 𝐴   𝑄w: Gw ⊢v 𝐴 ⊃ 𝐵 
------+----------------𝑀𝑃 
𝑃: Gs ∪ Gw ⊢v 𝐵 

where it is understood that 𝑃 = 𝒯��(𝑄s, 𝑄w). 

The semantics provided in Part II is parameterized by two natural numbers: 𝑖 
and 𝑧. Informally, 𝑖 designates the stage of a construction of the natural 
numbers and 𝑧 designates a “very large” natural number. For a given choice of 
these parameters, a formal proof may or may not be interpretable. Thus 

traditional soundness gives way to a relative soundness. A proof 𝑃 is sound 
(satisfaction in the interpretation passes from axioms down to conclusions) 

only if the complexity of 𝑃 (to be specified in Part II) is bounded by the 
given parameters of the semantical interpretation. In this setting a formal 

proof is not necessarily meaningful (i.e. has an interpretation) even though 

the axioms are all valid and the rules of inference are accepted. The 

complexity must also be taken into consideration. I will now present the Axiom 

Groups that will specify the formal systems RA, RCA, and RCAMOD.  

Axioms for Rational Arithmetic (𝑹𝑨) 
The language 𝐿o_ is a first order predicate language formed as usual from 

Variables 𝑥, 𝑦, … 

Constants 0, 1 

Function -x, 𝑓�, … , 𝑓6, 𝑖𝑛𝑡(𝑥), 𝐼𝑁𝑇(𝑥), 𝐴𝐵𝑆(𝑥) 

Operations +, *, -, / 

Predicate 𝑁(𝑥) 

Relations =,< 

Connectives ¬, ∧, ∨, ⊃ (≡ introduced as the usual abreviation) 

Quantifiers ∀, ∃ 

Rational numbers will be treated as signed order pairs ±< 𝑛,𝑚 > of non negative 
natural numbers and written in standard form of ±n/m. Q denotes the class of 
rational numbers. The variables 𝑥, 𝑦, are intended to have rational numbers as 
values. 𝑓�, 𝑓s … is a specified list of effectively calculable primitive recursive 
functions. 𝑓� plays a special role, defined in Axiom Group III. 𝑖𝑛𝑡(𝑥), the 
smallest integer ≥ 𝑥, 𝐼𝑁𝑇(𝑥), the largest integer ≤ 𝑥, and 𝐴𝐵𝑆(𝑥), the absolute 
value, are also defined in Axiom Group III. We may write 𝐴𝐵𝑆(𝑥) as |𝑥|. 𝑁(𝑥) 
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selects out the class 𝑁 of non-negative integers.  

Define TERM to be the class of closed terms (i.e., without free variables) of 

𝐿o_. 

It is convenient to introduce a special list of meta-variables 𝑘, 𝑙, 𝑛, 𝑚 whose 
intended domain is N, and to use "∀𝑛" and "∃𝑛" to indicate abbreviations for 
corresponding bounded quantifiers: 

∀𝑛𝐴(𝑛) denotes ∀𝑥6(𝑁(𝑥6) ⊃ 𝐴(𝑥6)) 

∃𝑛𝐴(𝑛) denotes ∃𝑥6(𝑁(𝑥6) ∧ 𝐴(𝑥6)) 

where 𝑥6 is a variable of 𝐿�� associated with the meta-variable 𝑛. 

We say that a term 𝑡 of a formal System 𝐹 containing 𝑅𝐴 is a natural number 
term iff there is a proof 𝑃 ⊢v 𝑁(𝑡). 

We can formulate a natural number version of UI as the following derived rule: 

Natural Number Universal Instantiation 

∀𝑛𝐴(𝑛) 
-----NNUI (where 𝑡 is any natural number term) 
𝐴(𝑡) 

This is a contraction of the following schema: 

∀𝑥(𝑁(𝑥) ⊃ 𝐴(𝑥)) 
------------UG 

𝑁(𝑡) ⊃ 𝐴(𝑡)     𝑃: ⊢v 𝑁(𝑡) 
----------+--------MP 

         𝐴(𝑡) 

Define 𝑥 ≤ 𝑦 to be the disjunction 𝑥 < 𝑦 ∨ 𝑥 = 𝑦. 

Group I Axioms for a Rational Arithmetic 

L1 ∀𝑥𝑦(𝑥 + 𝑦 = 𝑦 + 𝑥) 

L2 ∀𝑥𝑦(𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥) 

L3 ∀𝑥𝑦𝑤(𝑥 + (𝑦 + 𝑤) = (𝑥 + 𝑦) + 𝑤) 

L4 ∀𝑥𝑦𝑤(𝑥 ∗ (𝑦 ∗ 𝑤) = (𝑥 ∗ 𝑦) ∗ 𝑤) 

L5 ∀𝑥𝑦𝑧(𝑥 ∗ (𝑦 + 𝑧) = 𝑥 ∗ 𝑦 + 𝑥 ∗ 𝑧) 

L6 ∀𝑥(𝑥 + 0 = 𝑥) 

L7 ∀𝑥(𝑥 ∗ 1 = 𝑥) 

L8 ∀𝑥∃𝑦(𝑥 + 𝑦 = 0) 

L9 ∀𝑥(𝑥 ≠ 0 ⊃ ∃𝑦(𝑥 ∗ 𝑦 = 1)) 

L10 ∀𝑥𝑦𝑤(𝑥 < 𝑦 ∧ 𝑦 < 𝑤 ⊃ 𝑥 < 𝑤) 

L11 ∀𝑥(¬x < 𝑥) 
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L12 ∀𝑥(x < x + 1) 

L13 ∀𝑥𝑦(𝑥 < 𝑦	 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦) 

L14 ∀𝑥𝑦𝑤(𝑥 < 𝑤 ⊃ 𝑥 + 𝑦 < 𝑤 + 𝑦) 

L15 ∀𝑥𝑦𝑤(0 < 𝑦 ⊃ (𝑥 < 𝑤 ⊃ 𝑥 ∗ 𝑦 < 𝑤 ∗ 𝑦)) 

L16 ∀𝑥𝑦(𝑥 < 𝑦 ⊃ −𝑦 < −𝑥) 

L17 ∀𝑥(𝑥 + (−𝑥) = 0),  

L18 ∀𝑥𝑦(𝑥 − 𝑦 = (𝑥 + (−𝑦))) 

L19 ∀𝑥(𝑥 ≠ 0 ⊃ 𝑥 ∗ (1 𝑥⁄ ) = 1) 

L20 ∀𝑥𝑦(𝑦 ≠ 0 ⊃ 𝑥 ∗ (1 𝑦⁄ ) = 𝑥 𝑦⁄ ) 

Group II Axioms for 𝑁 

N1 𝑁(0) ∧ ∀𝑥(𝑁(𝑥) ⊃ 𝑥 ≥ 0) 

N2 ∀𝑥<𝑁(𝑥) ⊃ 𝑁(𝑥 + 1)= 

N3 ∀𝑥<𝑁(𝑥) ∧ 𝑥 > 0 ⊃ 𝑁(𝑥 − 1)= 

N4 ∀𝑥(𝑁(𝑥) ∧ 0 ≤ 𝑥 ≤ 1 ⊃ (𝑥 = 0 ∨ 𝑥 = 1) 

N5 ∀𝑥∃𝑛𝑚(𝑥 = 𝑛/𝑚 ∨ 𝑥 = −𝑛/𝑚) 

Group III Definitional Axioms for 𝑓�, 𝑓s, . .., 𝑖𝑛𝑡, 𝐼𝑁𝑇, 𝐴𝐵𝑆 

int ∀𝑥∀𝑦(𝑦 = 𝑖𝑛𝑡(𝑥) ≡ 𝑁(𝑦) ∧ y ≤ x ∧ ∀𝑚(𝑚 > 𝑦 ⊃ 𝑚 > x)) 

INT ∀𝑥∀𝑦(𝑦 = INT(𝑥) ≡ 𝑁(𝑦) ∧ y ≥ x ∧ ∀𝑚(𝑚 < 𝑦 ⊃ 𝑚 < 𝑥)) 

ABS ∀𝑥∀𝑦(𝑦 = 𝐴𝐵𝑆(𝑥) ≡ <(𝑥 ≥ 0 ∧ 𝑦 = 𝑥) ∨ (𝑥 < 0 ∧ 𝑦 = −𝑥)=) 

Define 𝑓�, 𝑓s, … as specific, effectively computable, strictly increasing functions 
mapping N into N, selected to provide a sufficient rate of growth suitable for 

various semantical and proof theoretic purposes as developed in the Parts II 

and III. We assume that 𝑓� is chosen so that for all natural numbers 𝑛, 𝑓�(𝑛) > 𝑛. 

DEF0 ∀𝑚(𝑁(𝑓�(𝑚)) ∧ 𝑓�(𝑚) > 𝑚	 ∧ 	∀𝑛<𝑚 < 𝑛 ⊃ 𝑓�(𝑚) < 𝑓�(𝑛)=) 

DEF1 𝑓s	(0) = 1	 ∧ 	∀𝑛(𝑓s(𝑛 + 1) = 𝑓�<𝑓s(𝑛)=) 

etc., as needed. 

Group IV Induction Schema 

IND(RA) 𝐴(0) ∧ ∀𝑛(𝐴(𝑛) 	⊃ 	𝐴(𝑛 + 1)) ⊃ 	∀𝑛𝐴(𝑛) 

where 𝐴(𝑥6) is any wff in 𝐿o_ with free variable 𝑥6. 

Group V Derived Computational Axioms 

C1 ∀𝑛(𝑛 + 0 = 𝑛) 	∧ ∀𝑛𝑚(𝑛 + (𝑚 + 1) = (𝑛 + 𝑚) + 1) 

C2 ∀𝑛(𝑛 ∗ 0 = 𝑛) 	∧ ∀𝑛𝑚(𝑛 ∗ (𝑚 + 1) = (𝑛 ∗ 𝑚) + 𝑛) 

C3 ∀𝑛(𝑛 − 0 = 𝑛) ∧ 	∀𝑛𝑚(𝑛 − (𝑚 + 𝑙) 	= 	 (𝑛 − 𝑚) − 𝑙) 

C4 ∀𝑛((𝑛 + 1) − 1 = 𝑛) ∧ 	∀𝑛𝑚(𝑛 − 𝑚 = −(−𝑛 + 𝑚)) 

C5 ∀𝑛𝑚𝑙𝑘(𝑚 ≠ 0 ∧ 𝑘 ≠ 0 ⊃ ((𝑛 𝑚⁄ ) ∗ (𝑙 𝑘⁄ ) = (𝑛 ∗ 𝑙) 𝑚 ∗ 𝑘⁄ )	 
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C6 ∀𝑛𝑚𝑙𝑘(𝑚 ≠ 0 ∧ 𝑘 ≠ 0 ⊃ ((𝑛/𝑚) ± (𝑙/𝑘) = ((𝑛 ∗ 𝑘) ± ((𝑚 ∗ 𝑙))/(𝑚 ∗ 𝑘))	 

C7 ∀𝑛𝑚𝑙𝑘(𝑚 ≠ 0 ∧ 𝑘 ≠ 0 ∧ 𝑙 ≠ 0 ⊃ ((𝑛/𝑚)/(𝑙/𝑘) = (𝑛 ∗ 𝑘)	/(𝑚 ∗ 𝑙)	) 

C8 ∀𝑛𝑚(𝑚 ≠ 0 ∧ 𝑛 ≠ 0 ⊃ 	0	 < 𝑛/𝑚) 

C9 ∀𝑛𝑚𝑙𝑘(𝑚 ≠ 0 ∧ 𝑘 ≠ 0 ⊃ (𝑛/𝑚 = 𝑙/𝑘	 ≡ 	𝑛 ∗ 𝑘 = 𝑚 ∗ 𝑙	) 

C10 𝑁(𝑝) for any natural numbers p. 

All of these axioms Cl – C10 are derivable from groups I - IV . They provide 

the usual calculation rules for arithmetic. 

We can now specify RA as RA = IPC + Groups I - V. 

Axioms for Rational Constructive Analysis (𝑹𝑪𝑨) 

The language 𝐿od_ of RCA is a first order language with a modal tense operator 
∆, which extends 𝐿o_ by adding 

the predicate 𝐾(𝑥), 

the functions ℱ(𝑥), ℱ(𝑥, 𝑦), 

the parameter 𝑧, 

the tense operator ∆. 

𝐾(𝑥) has the "presently available" natural numbers as its intended domain. 
Intuitively one imagines a process for generating natural numbers for the 

purpose of doing some computation or argument. At any particular stage of this 

process 𝐾(𝑡) holds if 𝑡 is a term that denotes a natural number already 
produced, while ∆𝐾(𝑡) holds also of those terms 𝑡 that will denote the natural 
numbers at the next stage of the process. 

ℱ(𝑥) denotes an effectively calculable, increasing function (one of the 
𝑓�..... )under which 𝐾(𝑥) is closed in the sense 𝐾(𝑥) ⊃ ∆𝐾(ℱ(𝑥)). ℱ(𝑥, 𝑦) denotes 
ℱ���(R)(𝑦), the 𝐼𝑁𝑇(𝑥)-fold iteration of ℱ applied to 𝑦. By convention ℱ� is the 

identity function and ℱ6 s(𝑥) = 	ℱ(ℱ6(𝑥)) for 𝑛 ≥ 0. 

The parameter 𝑧, which is never quantified in a wff in 𝐿od_, will be 
interpreted by a "large" natural number. In particular, 𝑧 is not a present 
number, nor will it be. 

The closed terms (no free variables but with possible occurrences of the 

parameter 𝑧) constitute a class denoted by 𝑇𝐸𝑅𝑀(𝑧). 

The tense operator ∆ is a sentential operator for 𝐿od_: if 𝐴 is a wff of 𝐿od_ 
so is ∆𝐴. ∆�𝐴 shall denote ∆	. . . ∆𝐴 where ∆ has been applied p-fold. 

The axioms for RCA include three additional groups. 

Group VI Definitional Axioms for ℱ(𝑥) and ℱ(𝑥, 𝑦) 

F1 ∀𝑥(ℱ(𝑥) = 𝑓�(𝑥)) 
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F2 ∀𝑚𝑛(𝑚 < 𝑛 ⊃ ℱ(𝑚) 	< ℱ(𝑛)) (Note: F2 follows from F1 and DEF0 of Group III.) 

F3 ∀𝑛(ℱ(0, 𝑛) = 𝑛) 

F4 ∀𝑛𝑚(ℱ(𝑛 + 1,𝑚) 	= ℱ(ℱ(𝑛,𝑚)	) 

Group VII Definitional Axioms for 𝐾(𝑥), 𝑧 and 𝑝� 
Kl 𝐾(1) ∧ ∀𝑛(𝐾(𝑛) 	∧ 	𝑛 > 0	 ⊃ 	𝐾(𝑛 − 1)	) 

K2 ∀𝑥(𝐾(𝑥) 	⊃ 𝑁(𝑥)) 

K3 𝐾 C𝑝0D ∧ 𝑝0 > 0 where 𝑝� is a fixed natural number greater than 0. 

K4 𝑁(𝑧) 

K5 ∀𝑛(𝐾(𝑛) ⊃ ∆𝐾(ℱ(𝑛))) 

K6 	𝐾(𝑛) ⊃ ∆6	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑛, m) < z) where 𝑛 is any natural number. 

K7 𝐾<ℓ= ⊃ ∀𝑛(	𝐾(𝑛) ⊃ ∆ℓ	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, 𝑛) < z)) where ℓ is any natural number. 

K, at any stage, denotes the set of “arrived” natural numbers. Kl - K3 say 
that 𝐾(𝑥) is an initial segment of 𝑁(𝑥) containing 𝑝�. K4 says 𝑧 is a natural 
number. K5 says K is closed under ℱ (but you may have to wait until the next 
stage.) K6 says 𝑧 is very “large”: if you look any K-number n of stages into 
the future and consider any integer 𝑚 then present, 𝑧 is greater than ℱ6(𝑚). 
K7 also asserts that z is very “large”: if ℓ and 𝑛 are any natural number 
presently in 𝐾 and you look ℓ stages into the future and consider any integer 
𝑚 then present, 𝑧 is greater than ℱ¥(𝑛). 

We add an axiom schema that asserts the persistence of proved, quantifier free 

assertions. 

Persistence of Atomic Truths 

PAT ∀𝑥s. … 𝑥6(𝐴 ⊃ ∆𝐴)  

where 𝐴 is a quantifier free wff in 𝐿od_ not containing the predicate 𝐾, with 
free variables 𝑥s. … 𝑥6. 𝐴 may contain the parameter 𝑧. 

The RCA Continuum 

The “continuum” in RCA, expressed in terms of the concepts of "large", 

“standard” and “infinitesimal” rationals, can now be introduced in terms of 

𝐾(𝑥), ℱ(𝑛,𝑚), and the parameter 𝑧 by means of the following wffs. 

𝐿(𝑥): ∃𝑛(𝐾(𝑛) ∧ 	ℱ(n, INT(𝐴𝐵𝑆(𝑥))) 	≥ 𝑧) 

𝑆(𝑥) : ∃n(𝐾	(𝑛) ∧ 	𝐴𝐵𝑆(𝑥) 	≤ 𝑛) 

𝐼(𝑥) : 𝑥 = 0 ∨ 	𝐿(1/𝑥) 

𝑥	𝐸𝑄	𝑦: 𝐼(𝑥 − 𝑦) 

I shall use 𝐿(𝑥), 𝑆(𝑥), 𝐼(𝑥) and 𝑥𝐸𝑄𝑦 as an abbreviation for the corresponding 
wff. 𝐿(𝑥) say that x is “large” if there is a 𝐾-number n of times that we may 
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apply ℱ to 𝑥 and get a number ≥ 𝑧 , i.e. 𝑧 is reachable from 𝑥 via ℱ in n-
steps for some already arrived n. 𝑆(𝑥) say 𝑥 is standard if its magnitude is 
bounded by an arrived natural number. 𝐼(𝑥) says 𝑥 is infinitesimal if it is 0 
or its reciprocal is large. Finally, 𝑥	𝐸𝑄	𝑦 says that 𝑥 is to be identified 
with 𝑦 if they differ by an infinitesimal. Note that all of these definitions 
require a "witness" n and this witness is required to be an already present 
natural number. (𝑆, 𝐸𝑄) will play the role of the continuum in RCA. 

Group VIII Induction for 𝑅𝐶𝐴 

IND(RCA) 𝐴(0) 	∧ 	∀𝑛(𝐴(𝑛) ⊃ 𝐴(𝑛 + 1)) ⊃ ∀𝑛𝐴(𝑛)  

where 𝐴(𝑥) is any wff in 𝐿od_, with one free variable 𝑥. 

Group IX Decidable Least Element Principle (LEP) and related schemata 

LEP ∃𝑛𝐴(𝑛) ∧ 	∀𝑛	(𝐴	(𝑛) 	∨ ¬𝐴	(𝑛)	) ⊃ ∃𝑛(𝐴(𝑛) ∧ ∀𝑚(𝑚 < 𝑛 ⊃ ¬𝐴(𝑚)) 

 where 𝐴(𝑥) is any wff of 𝐿od_ with free variable 𝑥. 

BLEP ∃𝑛(𝑛 ≤ 𝑡 ∧ 𝐴(𝑛) ∧ 	∀	𝑚(𝑚	 ≤ 	𝑛 ⊃ <𝐴(𝑚) ∨ ¬𝐴(𝑚)=)) ⊃ ∃𝑛(𝑛 ≤ 𝑡 ∧ 𝐴(𝑛) ∧ ∀𝑚<𝑚 < 𝑛 ⊃ ¬𝐴(𝑚)=) 

where 𝐴(𝑥) any wff of 𝐿od_ with free variable 𝑥 and 𝑡 is a closed term. 

This is the Bounded Least Element Principle and is a direct consequence of LEP. 

BMEP ∃𝑛(𝑛 ≤ 𝑡 ∧ 𝐴(𝑛) ∧ ∀𝑛(𝑛 ≤ 𝑡 ⊃ (𝐴(𝑛) ∨ ¬𝐴(𝑛)))) ⊃ ∃𝑛(𝑛 ≤ 𝑡 ∧ 𝐴(𝑛) ∧ ∀𝑚(𝑚 > 𝑛 ∧ 𝑚 ≤ 𝑡 ⊃ ¬𝐴(𝑚))) 

 where 𝐴(𝑥) any wff of 𝐿od_ with free variable 𝑥 and 𝑡 is a closed term. 

This is the Bounded Maximum Element Principle and also is a direct consequence 

of LEP. 

 The formal system 𝑅𝐶𝐴 can now be specified as 

𝑅𝐶𝐴 = IPC + TL + RA + Groups VI – IX + PAT. 

In the following theorem we gather together a few simple consequences of axiom 

Group VII, the definitional axioms for 𝐾(𝑥), 𝑧 and 𝑝�. 

Theorem I.1: Basic properties of 𝐾, ℱ,	 and 𝑧.  

The following are theorems of RCA of ∆ − 𝑑𝑒𝑝𝑡ℎ = 0. 

(1) ⊢od_ 𝐾(0). 

(2) ⊢od_ 𝐾(1). 

(3) ⊢od_ ∀𝑙∀𝑚(𝑙 < 𝑚 ⊃ <𝐾(𝑚) ⊃ 𝐾(𝑙)=). 

(4) ⊢od_ ∀𝑛(𝐾(𝑛) ⊃ ℱ	(n, n) < z), ⊢od_ ∀𝑛(𝐾(𝑛) ⊃ ℱ	(n) < z). 

(5) ⊢od_ 0 < z. 

(6) ⊢od_ ∀𝑛(𝑛 < ℱ(𝑛)). 

(7) ⊢od_ ¬𝐾(𝑧) 

Proof: (1) and (2) are simple consequences of K1. (3) can be proved by 
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induction using K1.  

Proof of (4): from (1), (2), and from K7 with 𝑙 = 0, we get 

⊢od_ 𝐾(0) ⊃ ∀n(	𝐾(n) ⊃ 	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, n) < z))   ⊢od_ 𝐾(0) 

---------------+-----------------------------------MP 

⊢od_ ∀n(	𝐾(n) ⊃ 	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, n) < z)) 

-------------+------------------UI 

⊢od_ 𝐾(n) ⊃ 	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, n) < z)  ⊢od_ ∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, n) < z) ⊃ (𝐾(𝑛) ⊃ 	ℱ	(𝑛, n) < z) 

-------------+------------------------------------------------(⊃ Trans) 

⊢od_ 𝐾(n) ⊃ (𝐾(𝑛) ⊃ 	ℱ	(𝑛, n) < z). 

--------------------------Derived Rule:{(𝐴 ⊃ (𝐴 ⊃ 𝐵)} ⊢ (𝐴 ⊃ 𝐵) 

⊢od_ 𝐾(n) ⊃ ℱ	(n, n) < z)    

------------------UG;	 

⊢od_ ∀𝑛(𝐾(𝑛) ⊃ ℱ	(n, n) < z). 

The second part of (4) follows by showing that ⊢od_ 	 ∀𝑛(ℱ	(𝑛) ≤ ℱ	(𝑛, n)). 

Proof of (5): ⊢od_ 0 < z follows from (1) and the instance ⊢od_ 𝐾(0) ⊃ ℱ	(0) < z of 
(4) and ⊢od_ 0 < ℱ	(0) which follows from DEF0 and F1. None of these proofs 
involves ∆I or ∆E so their ∆ − 𝑑𝑒𝑝𝑡ℎ is 0. 

Proof of (6): ⊢od_ 𝑛 < ℱ(𝑛). This follows directly from the definition DEF0 of 𝑓� 
which stipulates that 𝑓�(𝑛) > 𝑛 and from the definition F1 of ℱ which stipulates 
that ℱ(𝑛) = 𝑓�(𝑛). The ∆ − 𝑑𝑒𝑝𝑡ℎ of this proof is 0. 

Proof of (7):	⊢od_ ¬𝐾(𝑧). This can be derived from (4) and (6) as follows. 
⊢od_ ∀𝑛(𝐾(𝑛) ⊃ ℱ	(n) < z)       ⊢od_ ∀𝑛(𝑛 < ℱ(𝑛)) 
--------------------UI     ----------UI 

⊢od_ K(𝑧) ⊃ ℱ	(z) < z           ⊢od_ 𝑧 < ℱ(𝑧) 
-------------+-------------------------(Derived Rule: {(𝐴 ⊃ 𝐵)	, 𝐶} ⊢ (𝐴 ⊃ 𝐵 ∧ 𝐶)) 
⊢od_ K(𝑧) ⊃ (ℱ	(z) < z ∧ 𝑧 < ℱ(𝑧)) 
--------+-----------------(Arithmetic) 

⊢od_ K(𝑧) ⊃ (z < z)    ⊢od_ ¬(z < z)     
-----------+------------------(Derived Rule: {(𝐴 ⊃ 𝐵)	, 𝐶} ⊢ (𝐴 ⊃ 𝐵 ∧ 𝐶)) 
⊢od_ K(𝑧) ⊃ (z < z) ∧ ¬(z < z)     ⊢ (K(𝑧) ⊃ (z < z) ∧ ¬(z < z)) ⊃ ¬K(𝑧) 
------+-----------------------------------------------MP 

⊢od_ ¬K(𝑧) 

[End of proof] 

Axioms for The Interpretation System of RCA (𝑹𝑪𝑨𝑴𝑶𝑫) 
The language 𝐿od_�©ªis a first order language that extends 𝐿o_ by adding 

the predicate 𝐾(𝑥, 𝑦),the functions ℱ(𝑥), ℱ(𝑥, 𝑦), 𝓀(𝑥), 𝓂(𝑥). 



 

14 
 

Note that 𝐿od_�©ª does not have the tense operator ∆, the predicate 𝐾, or the 
parameter 𝑧. The interpretation system provides a concept of “realizability” of 
a sentence 𝐴 of 𝐿od_ which includes a mapping of 𝐴 into a sentence 𝐴∗ in 𝐿od_�©ª. 

The axioms for RCAMOD consists of the axioms for IPC, RA , Group VI for ℱ(𝑥) 
and ℱ(𝑥, 𝑦), Group X below (also denoted MOD) for 𝓀(𝑥), 𝓂(𝑥) and 𝐾(𝑥, 𝑦), and 
Group XI below for Induction for RCAMOD.  

𝐾(𝑛,𝑚) is to mean 𝑚 occurs in 𝐾, the set of “arrived number”, at stage 𝑛 of 
the process that generates 𝐾. 

Group X Modeling Axioms: Definitional axioms for 𝓀(𝑥), 𝓂(𝑥), and 𝐾(𝑥, 𝑦) 

MOD1 𝓀(0) 	= p0 where p0 is the natural number in Axiom Group VII. 

MOD2 ∀𝑛(𝓀(𝑛 + 1) = ℱ(𝓀(𝑛))) 

MOD3 𝐾(0,	p0) ∧ ∀𝑛𝑚(𝐾(𝑛,𝑚) ⊃ 	𝐾(𝑛	 + 	1, ℱ(𝑚)) 

MOD4 ∀𝑛(𝐾(𝑛, 0) ∧ ∀m<𝐾(𝑛,𝑚) ⊃ ∀𝑙(𝑙 < m ⊃ 𝐾(𝑛, 𝑙)=) 

MOD5 ∀𝑥𝑦(𝐾(𝑥, 𝑦) ⊃ 	 (𝑁(𝑥) ∧ 	𝑁(𝑦))) 

MOD6 ∀𝑛𝑚𝑙	(𝐾(𝑛,𝑚) ∧ 	𝑙 > 	𝑛 ⊃ 𝐾(𝑙, 𝑚)) 

MOD7 ∀𝑛	(𝐾(𝑛, 𝓀(𝑛)	) 	∧ 	∀𝑚(𝑚 > 𝓀(𝑛) ⊃ ¬𝐾(𝑛,𝑚)) 

MOD8 ∀𝑛(𝓂(𝑛) = 	ℱ(𝓀(𝑛), 𝓀(𝑛))) 

MOD1 and MOD2 define 𝓀 in terms of ℱ and 𝑝�, namely, 𝓀(𝑛) = ℱ6(𝑝­). MOD3-6 says 
that 𝐾(𝑥, 𝑦) is an indexed sequence of increasing initial segments of 𝑁 all of 
which contain p0. 𝐾(𝑛,𝑚) “says” that 𝑚 is in the 𝑛th initial segment. MOD7 
says 𝓀(𝑝) is maximum element in the 𝑝Q® segment {𝑞|𝐾(𝑝, 𝑞)}. Finally, MOD1, MOD3 
and MOD7 imply that 𝑝� is the maximum element in 0Q® segment{q|𝐾(0,	q)}. MOD8 
defines 𝓂(𝑥) as a form of super-exponential diagonal function.  

Group XI Induction for RCAMOD 

IND(MOD) 𝐴(0) 	∧ 	∀𝑛(𝐴(𝑛) ⊃ 𝐴(𝑛 + 1)	) 	⊃ ∀𝑛𝐴(𝑛) 

where 𝐴(𝑥) is any wff in 𝐿od_�©ª having 𝑥 as its free variable. 

We can now specify RCAMOD as IPC + RA + Groups VI, X, XI. In Part II we shall 

define an interpretation of RCA using RCAMOD to provide the underlying 

interpretation of K(x) and the evaluation of atomic sentences. 

Summary of the formal systems 

RA = IPC + I-V; Rules of inference: MP, UG 

RCA = RA + TL + VI-IX + PAT; Rules of inference: MP, UG, ∆I, ∆E 

RCAMOD = RA + VI + X + XI; Rules of inference: MP, UG 

This finishes the presentation of the formal systems. 
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Part II An interpretation for RCA 

In the following definitions 𝑒, 𝑎, 𝑏, 𝑑, 𝑖, 𝑗, 𝜁...will denote natural numbers, 
A, B will denote sentences and A(x) a wff (with at most one free variable x) in 
𝐿od_; P, Q, Q1, Q2 will denote formal proofs in RCA. ℱ(𝑥),	𝓀(𝑥), 𝓂(𝑥) will denote 
functions defined on natural numbers satisfying Fl and F2 of Axiom Group VI and 

MOD8. ⌈𝑃⌉, or equivalently, 𝑔𝑛(𝑃), will denote the Gödel number of formal proof 
P under some specified Gödel numbering scheme. Similarly ⌈𝐴⌉(or 𝑔𝑛(𝐴))and ⌈𝑡⌉ (or 
𝑔𝑛(𝑡)) will denote the Gödel numbers of the wff A and term t. Given an indexed, 
enumeration of partial recursive functions, we shall use a modified Kleene 

notation e{a} to denote the result of applying the partial recursive function 𝜑¹ 
with index e to the natural number a, that is, e{a} = 𝜑e(𝑎). Using Church’s lambda 
notation, we may write 𝑒 = 𝑔𝑛(𝜆𝑥[𝜑¹(𝑥)]) = 	 ⌈𝜆𝑥[𝜑¹(𝑥)]⌉.  

e{𝑎s, … , 𝑎6} is defined to be the composition e{𝑎s}{𝑎w}	. . . {𝑎6}, so that, for example, 
e{a, b} = e{a}{b} = 𝜑¾¿(À)(b).  

Lemma K: Suppose 𝑓 is a given recursive function of 𝑛 variables. We can 
effectively find a Gödel number 𝑒 such that for any natural numbers 𝑎s …𝑎6, 
e{𝑎s, … , 𝑎6} = 𝑓(𝑎s, … , 𝑎6).  

Proof: Define a sequence of recursive functions 𝑓Á<𝑥1, … , 𝑥𝑙=, for 𝑙 = 𝑛, … ,1 as 

𝑓6(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥1, … , 𝑥𝑛) and 𝑓Á(𝑥1, … , 𝑥𝑙) = 𝑔𝑛(𝜆𝑥𝑙+1Â𝑓𝑙+1(𝑥1, … , 𝑥𝑙+1)Ã) for 𝑙 = 𝑛 − 1, … ,1. Finally 
define 𝑒 = 𝑔𝑛(𝜆𝑥s[𝑓s(𝑥s)]). We can then show by recursion that for 𝑙 = 1, . . . , 𝑛 − 1, 
𝑒{𝑎s, … , 𝑎Á} = 𝑔𝑛(𝜆𝑥Á s[𝑓Á s(𝑎s, … , 𝑎Á, 𝑥Á s)]). For 𝑙 = 𝑛 − 1, this implies that 𝑒{𝑎s, … , 𝑎6Äs} =
𝑔𝑛(𝜆𝑥6[𝑓6(𝑎s, … , 𝑎6Äs, 𝑥6)]) = 𝑔𝑛(𝜆𝑥6[𝑓(𝑎s, … , 𝑎6Äs, 𝑥6)]) and therefore 𝑒{𝑎s, … , 𝑎6} =
𝜑Å{ÆÇ,…,ÆÈÉÇ}(𝑎6) = 	𝑓(𝑎s, … , 𝑎6). 
[End of proof of Lemma K.] 

Let pr be an effective, 1-1 onto, pairing function from N×N→N*. If 𝑒 = 𝑝𝑟(𝑛,𝑚), 
we shall typically write n and m as 𝑒� and 𝑒s, respectively, and write 𝑒 =
〈𝑒�, 𝑒s〉. Using this notation, the maps 𝑒 → 𝑒� and 𝑒 → 𝑒s provide the first and 
second components of e considered as an ordered pair.  

By convention we define 𝜑� to be the constant 0 function and 〈0,0〉 = 0. If t is in 
𝑇𝐸𝑅𝑀 then t in 𝑇𝐸𝑅𝑀 denotes the value of t expressed in TERM as a rational 
number (𝑛/𝑚 or	−𝑛/𝑚) in the lowest reduced form. The natural number 𝑖 is 
represented in TERM as 𝑖, the rational (in lowest terms) whose value is 𝑖. For 
simplicity, for the natural numbers 0, 1, 2, … considered as rationals we will 
drop the under-bar. An integer ζ will used to interpret the parameter 𝑧 of 𝐿od_ 
and ζ will denote the corresponding term in TERM. If t ∈ 𝑇𝐸𝑅𝑀(𝑧) then 𝑡+ ∈ 

                         
* The use of the symbol N×N→N does not presuppose the infinite set of natural numbers 
but is merely used as a shorthand to say that 𝑝𝑟 is a natural number valued function 
defined on pairs of natural numbers. 
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𝑇𝐸𝑅𝑀 denotes the result of replacing every occurrence of z in t by 𝜁. 
Similarly if A ∈ 𝐿od_ then 𝐴+ is the wff that results by replacing all 
occurrences of z in A by ζ. If 𝑡 ∈ TERM then ⌊𝑡⌋ denotes the rational number 
equal to the value of 𝑡. 

The complexity of a proof P in RCA is measured by the ∆-embedding in its wffs 
as well as the number of applications of ∆ introduction and elimination. 

Definition II.1 Let {A} be a set consisting of a single wff A in L�Ó�. Define 
∆({A}), the ∆ − depth of A, recursively on the syntactic rank of A as follows: 

1. If A is atomic then ∆({𝐴}) = 	0. 

2. If A is 𝐵	 ∨ 	𝐶 or 𝐵 ∧ 𝐶 or 𝐵	 ⊃ 	𝐶 then ∆({𝐴}) 	= 	𝑚𝑎𝑥{∆({𝐵}), ∆({𝐶})}. 

3. It A	is ¬𝐵 or ∀𝑥𝐵 or ∃𝑥𝐵 then ∆({𝐴}) 	= 	 ∆({𝐵}). 

4. If A is ∆𝐵 then ∆({𝐴}) 	= 	1	 + 	∆({𝐵}). 

[End of definition] 

Definition II.2 Let P  be a formal proof in 𝑅𝐶𝐴. Define ∆(𝑃) recursively as 
follows. 

1. If P consists of a single wff A then ∆(𝑃) 	= 	 ∆({𝐴}). 

2. If 𝑃:	 ⊢od_ 	𝐴 consists of two sub-proofs 𝑄1:	 ⊢od_ 	𝐵 and 𝑄2:	 ⊢od_ 	𝐵 ⊃ 𝐴 followed by 
an application of MP than ∆(𝑃) 	= 	𝑚𝑎𝑥{∆(𝑄1), ∆(𝑄2)}. 

3. If 𝑃:	 ⊢od_ 		 ∀	𝑥𝐴 consists of a proof 𝑄 ⊢od_ 𝐴 followed by an application of UG 
then ∆(𝑃) 	= 	 ∆(𝑄). 

4. If 𝑃:	 ⊢od_ ∆𝐴 consists of a proof 𝑄:	 ⊢od_ 	𝐴 followed by an application of ∆I 
then ∆(𝑃) 	= 	1	 + 	∆(𝑄). 

5. If 𝑃: ⊢od_ 	𝐴 consists of a proof 𝑄: ⊢od_ ∆𝐴 followed by an application of ∆E 
then ∆(𝑃) 	= 	1	 + 	∆(𝑄). 

For derived rules of inference define ∆(𝑃) recursively as follows: 

6. If 𝑃:	 ⊢od_ 	𝐴 ⊃ 𝐶 consists of two subproofs 𝑄1:	 ⊢od_ 	𝐴 ⊃ 𝐵 and 𝑄2:	 ⊢od_ 	𝐵 ⊃ 𝐶 
followed by an application of ⊃ 𝑇𝑟𝑎𝑛𝑠 than ∆(𝑃) 	= 	𝑚𝑎𝑥{∆(𝑄1), ∆(𝑄2)}. 

7. If 𝑃:	 ⊢od_ 𝐴(𝑡) consists of a proof 𝑄 ⊢od_ ∀𝑥𝐴(𝑥) followed by an application of 
UI then ∆(𝑃) 	= 	 ∆(𝑄). 

8. If 𝑃:	 ⊢od_ 𝐴(𝑡) consists of a proof 𝑄1 ⊢od_ 𝐴(𝑠) and 𝑄2 ⊢od_ 𝑠 = 𝑡 followed by an 
application of = 𝑆𝑢𝑏 then ∆(𝑃) 	= 	max	{∆(𝑄1), ∆(𝑄2)} . 

9. If 𝑡 is a natural number term and 𝑃:	 ⊢od_ 𝐴(𝑡) consists of a proof 𝑄 ⊢od_ ∀𝑛𝐴(𝑛) 
followed by an application of UI then ∆(𝑃) 	= 	max	{∆(𝑄), ∆(𝑅)} where 𝑅: ⊢od_ 𝑁(𝑡).  

[End of definition] 

Note: In Definition II.2, it must be assumed that a particular analysis of the 

justification of each line of P has been carried out; the ∆(𝑃) is uniquely 
determined for the given analysis of the proof. 
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Kleene realizability and Kripke semantics are combined to handle the 

intuitionistic and tense logic aspects of 𝑅𝐶𝐴. A world, in Kripke’s sense, 
indexed by 𝑖, will correspond to a stage 𝑖 in the process that produces the 
natural numbers 𝑛 satisfying 𝐾(𝑛). Furthermore, a value 𝜁 for the parameter z 
must be selected before the semantics can be fully specified for the sentences 

of 𝑅𝐶𝐴. Finally, a consistent set 𝑇 of sentences of 𝐿od_�©ª containing 𝑅𝐶𝐴𝑀𝑂𝐷 
is selected which is used to decide atomic sentences of 𝐿od_�©ª. Note that the 
parameter 𝑧 is in 𝐿od_ but not in 𝐿od_�©ª.  𝑇 has to have the disjunctive and 
existential property. That is, from a proof in 𝑇 of 𝐴 ∨ 𝐵 one can effectively 
construct a proof of A or of B , and from a proof in 𝑇 of ∃𝑥𝐴(𝑥) one can 
effectively construct a term t and a proof in 𝑇 of A(t). The notion 𝑒 realizes 
a sentence in 𝐿od_ at world 𝑖 is defined relative to the choice of 𝑇 and 𝜁. 

Definition II.3 REL: (Realizability.) Let 𝜁 be a natural number. Let 𝑒, 𝑎, and 
𝑖 denote natural numbers. (𝑒, 𝑖, 𝜁) RE A is defined for sentences A of 𝐿od_ (z may 
occur as a parameter in A) as follows.  

Define 𝐴Ø,+ to be the sentence of 𝐿od_�©ª that results from A by replacing all 
occurrences (if any) of K(t) by K(𝑖,	t) and replacing all occurrences of z by 𝜁. 

REL1. Let A be an atomic sentence. 
(𝑒, 𝑖, 𝜁) RE A iff 𝑒	 = 	0 and ⊢od_�©ª 𝐴Ø,+. 

REL2. (𝑒, 𝑖, 𝜁) RE 𝐴 ∧ 𝐵 iff (𝑒�, 𝑖, 𝜁) RE A and (𝑒s, 𝑖, 𝜁) RE B. 

REL3. (𝑒, 𝑖, 𝜁) RE 𝐴	𝑉	𝐵 iff (𝑒� 	= 	0 and (𝑒s, 𝑖, 𝜁) RE A) or (𝑒� 	≠ 	0 and (𝑒s, 𝑖, 𝜁) RE B). 

REL4. (𝑒, 𝑖, 𝜁) RE 𝐴 ⊃ 𝐵 iff for all 𝑎, ((𝑎, 𝑖, 𝜁) RE A implies (𝑒{𝑎}, 𝑖, 𝜁) RE B). 

REL5. (𝑒, 𝑖, 𝜁) RE ¬𝐴 iff for all 𝑎, (𝑎, 𝑖, 𝜁) RE A is false. 

REL6. (𝑒, 𝑖, 𝜁) RE ∀𝑥𝐴(𝑥) iff for all 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧) (𝑒{⌈𝑡⌉}, 𝑖, 𝜁) RE A(t)). 

REL7. (𝑒, 𝑖, 𝜁) RE ∃𝑥𝐴(𝑥) iff there is a 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧) such that (𝑒�, 𝑖, 𝜁) RE A(t) and 
𝑒s 	= 	 ⌈𝑡⌉. 

REL8. (𝑒, 𝑖, 𝜁) RE ∆𝐴 iff (𝑒, 𝑖 + 1, 𝜁) RE A. 

The main result of Section II is the following Soundness Theorem: there is an 

effective, integer valued function 𝐸(𝑛,𝑚) such that if 𝑃 is a formal proof in 
𝑅𝐶𝐴 of a sentence 𝐴 in 𝐿od_ and 𝑖	 ≥ 	 ∆(𝑃) and 𝜁	 > 	𝓂(𝑖	 + 	∆(𝑃)) then (𝐸(⌈𝑃⌉, 𝜁), 𝑖, 𝜁) RE 𝐴. 

Before considering the proof of this theorem note that the stage 𝑖 at which one 
must begin in order to obtain a realization of A doesn't depend on the ∆ − 𝑑𝑒𝑝𝑡ℎ 
of A but rather on the ∆ − 𝑑𝑒𝑝𝑡ℎ of a proof of A, which may be far greater 
because of ∆E, ∆I, and MP. 

In this regard, realizability is not so much a semantics for sentences as it is 

a semantics of provable sentences together with their formal proofs. This is in 

contrast with the metamathematical position underlying traditional semantics 

(like Tarski semantics [Tarski 1930]9) that asserts that the "truth" of 
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sentences is determined solely in terms of the independent "truth" of its 

parts. Our realizability is a proof-sensitive soundness. 

In the following Lemmas supporting the proof of the Soundness Theorem, 𝐴 
denotes a sentence in 𝐿od_ and may contain terms in 𝑇𝐸𝑅𝑀(𝑧). 

Lemma II.1 Let 𝐴(𝑥) be a wff in 𝐿od_ with no free variables other than 𝑥. If t, 
s ∈ 𝑇𝐸𝑅𝑀(𝑧) and have equal values with respect to 𝑧, i.e., Û𝒕+Ý 	= 	 Û𝑠+Ý, then 
(𝑒, 𝑖, 𝜁) RE A(t) iff (𝑒, 𝑖	𝜁) RE A(s). 

Proof: Recall that 𝒕+ denotes the constant term in which every occurrence of z 
in 𝑡 is replaced by ζ, and 𝒕+ is the representation in lowest terms of the value 
of 𝒕+ in RCA.  

If 𝐴(𝑡) is atomic then ⊢� 𝐴<𝒕+= ≡ 	𝐴(𝑠+) since Û𝒕+Ý 	= 	 Û𝑠+Ý implies ⊢� 𝒕+ 	= 	 𝑠+ and 𝑇 
contains the substitution of equals for equals schema I18. Consequently, by 

clause RELl of the definition of realizability, (𝑒, 𝑖	𝜁) RE A(t) iff ⊢� 𝐴<𝒕+= iff 
⊢� 𝐴<𝑠+= iff (𝑒, 𝑖	𝜁) RE A(s). 

This argument can be readily extended by induction on the syntactic rank of 

wffs to all wffs 𝐴(𝑥) 𝐿od_ with a single free variable since the operation of 
substitution in wffs of terms in 𝑇𝐸𝑅𝑀(𝑧) for 𝑥 commutes with all the syntactic 
operations: ∀, ∃,∧, ∨, ⊃, ¬, ∆. For example, suppose 𝐴(𝑥) = ∀𝑦𝐵(𝑦, 𝑥) and for every term 
𝑢 in 𝑇𝐸𝑅𝑀(𝑧) the  Lemma has been proved for 𝐵(𝑢, 𝑥). Then, (𝑒, 𝑖, 𝜁) RE ∀𝑦𝐵(𝑦, 𝑡) iff 
for all 𝑢 in 𝑇𝐸𝑅𝑀(𝑧), (𝑒{⌈𝑢⌉}, 𝑖, 𝜁) RE 𝐵(𝑢, 𝑡). By the induction hypothesis, this 
implies that for all 𝑢 in 𝑇𝐸𝑅𝑀(𝑧) (𝑒{⌈𝑢⌉}, 𝑖, 𝜁) RE 𝐵(𝑢, 𝑠) and hence (𝑒, 𝑖, 𝜁) RE ∀𝑦𝐵(𝑦, 𝑠). 
As another example, consider 𝐴(𝑥) = ∆𝐵(𝑥). Since (∆𝐵(𝑥))RQ = 	 ∆𝐵(𝑥)RQ  then (𝑒, 𝑖, 𝜁) RE 
(∆𝐵(𝑥))RQ  iff (𝑒, 𝑖 + 1, 𝜁) RE 𝐵(𝑥)RQ , which, by the induction hypothesis, is true iff 
(𝑒, 𝑖 + 1, 𝜁) RE 𝐵(𝑥)Rg iff (𝑒, 𝑖, 𝜁) RE (∆𝐵(𝑥))Rg. The rest of the syntactic operators are 
handled similarly. 

[End of proof] 

Lemma II.2 The set 𝒮 of quantifier free sentences of 𝐿�Ó�ßàá	 is complete. 
Moreover, if 𝐴 is in 𝒮 then we can effectively construct a proof of 𝐴 or of 
¬𝐴. 

Proof: The functions of 𝐿�Ó�ßàá	 are all effectively computable so the constant 
terms of 𝐿�Ó�ßàá	 are effectively computable. Let 𝑛Q/𝑚Q or −𝑛Q/𝑚Q be the value of 

a constant term 𝑡 in reduced form. Then establish that ⊢od_�©ª 𝑡 = 𝑛Q/𝑚Q or 

⊢od_�©ª 𝑡 = −𝑛Q/𝑚Q. This can be used to construct the proof of the Lemma II.2 for 

the atomic sentences 𝑠 = 𝑡 and 𝑠 < 𝑡 or their negations by reducing the problem to 
proving in RCAMOD 𝑛g/𝑚g = 𝑛Q/𝑚Q	 or 𝑛g 𝑚g⁄ < 𝑛Q/𝑚Q or 𝑛Q/𝑚Q < 𝑛g 𝑚g⁄ . Having 

established completeness for atomic sentences, proceed by induction on 

syntactic rank. 

Case 1. 𝐴 = 𝐵 ∧ 𝐶. Either ⊢od_�©ª 𝐵 and ⊢od_�©ª 𝐶 or ⊢od_�©ª ¬𝐵 or ⊢od_�©ª ¬𝐶. In the 
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former case ⊢od_�©ª 𝐵 ∧ 𝐶 and in the later case ⊢od_�©ª ¬(𝐵 ∧ 𝐶) follows using the 
propositional tautology ⊢od_�©ª ¬𝐵 ⊃ ¬(𝐵 ∧ 𝐶) or ⊢od_�©ª ¬𝐶 ⊃ ¬(𝐵 ∧ 𝐶) as needed. 

Case 2. 𝐴 = 𝐵 ∨ 𝐶.  

Case 2.1. If either ⊢od_�©ª 𝐵 or ⊢od_�©ª 𝐶 then ⊢od_�©ª 𝐵 ∨ 𝐶.  

Case 2.2. If neither ⊢od_�©ª 𝐵 or ⊢od_�©ª 𝐶. Then by the induction hypothesis, e 
know that ⊢od_�©ª ¬𝐵 and ⊢od_�©ª ¬𝐶. Use the tautologies  

⊢od_�©ª ¬𝐵 ⊃ (𝐵 ⊃ ¬(𝐵 ∨ 𝐶)) and ⊢od_�©ª ¬𝐶 ⊃ (𝐶 ⊃ ¬(𝐵 ∨ 𝐶)) to get  

⊢od_�©ª (𝐵 ⊃ ¬(𝐵 ∨ 𝐶)) and ⊢od_�©ª (𝐶 ⊃ ¬(𝐵 ∨ 𝐶)) from the supposition and MP. 

Then apply the tautology ⊢od_�©ª ((𝐵 ⊃ ¬(𝐵 ∨ 𝐶)) ⊃ <𝐶 ⊃ ¬(𝐵 ∨ 𝐶)= ⊃ ((B ∨ C) ⊃ ¬(B ∨ C)) to 
get  ⊢od_�©ª (B ∨ C) ⊃ ¬(B ∨ C) from which we can derive ⊢od_�©ª ¬(B ∨ C) from the 
tautology ⊢od_�©ª ((B ∨ C) ⊃ ¬(B ∨ C)) ⊃ ¬(B ∨ C). 

Case 3. 𝐴 = 𝐵 ⊃ 𝐶.  

Case 3.1 Suppose ⊢od_�©ª 𝐶. Then  ⊢od_�©ª 𝐵 ⊃ 𝐶 follows by MP from the tautology 
⊢od_�©ª (𝐶 ⊃ (𝐵 ⊃ 𝐶).  

Case 3.2 Otherwise, by the induction hypothesis, ⊢od_�©ª ¬𝐶.  

Case 3.2.1. Suppose ⊢od_�©ª 𝐵. From the tautology ⊢od_�©ª 𝐵 ⊃ ((𝐵 ⊃ 𝐶) ⊃ 𝐶) we get 
⊢od_�©ª (𝐵 ⊃ 𝐶) ⊃ 𝐶. From the tautology ⊢od_�©ª ¬𝐶 ⊃ <(𝐵 ⊃ 𝐶) ⊃ ¬𝐶= we get 
⊢od_�©ª (𝐵 ⊃ 𝐶) ⊃ ¬𝐶, so ⊢od_�©ª (𝐵 ⊃ 𝐶) ⊃ (𝐶 ∧ ¬𝐶) from which we derive ⊢od_�©ª ¬(𝐵 ⊃ 𝐶). 

Case 3.2.2. Otherwise ⊢od_�©ª ¬𝐵. But ⊢od_�©ª ¬𝐵 ⊃ (𝐵 ⊃ 𝐶) is a tautology so by MP 
we get ⊢od_�©ª (𝐵 ⊃ 𝐶). 

Case 4. 𝐴 = ¬𝐵. By the induction hypothesis, ⊢od_�©ª 𝐵 or ⊢od_�©ª ¬𝐵. It suffices 
to show that if ⊢od_�©ª 𝐵 then ⊢od_�©ª ¬¬𝐵 and this follows from the tautology 
⊢od_�©ª 𝐵 ⊃ ¬¬𝐵. 

[End of proof] 

Lemma II.3 The set 𝒮 of quantifier free sentences of 𝐿�Ó�ßàá	 satifies Tertium 
non Datur, that is, if 𝐴 is in 𝒮 then ⊢�Ó�ßàá	 𝐴 ∨ ¬𝐴. 

Proof: Lemma II.3 follows from Lemma II.2. For example, effectively enumerate 

the proofs of 𝑅𝐶𝐴𝑀𝑂𝐷. Either a proof of 𝐴 or of ¬𝐴 will turn up from which 𝐴 ∨
¬𝐴 can be derived. 

[End of proof] 

Lemma II.4 Let 𝒮 be the set of quantifier and ∆ free sentence in 𝐿od_.	 Let 𝐴 ∈ 𝒮 
and let 𝑇 denote the theory 𝑅𝐶𝐴𝑀𝑂𝐷. Then there is an effectively calculable 
function ℬ:𝑁 → 𝑁, such that: 

(1) (Adequacy for 𝒮) For any natural numbers 𝑎, 𝑖, 𝜁, (𝑎, 𝑖, 𝜁) RE 𝐴 implies ⊢� 𝐴ä,+. 
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(2) (Soundness for 𝒮) If ⊢� 𝐴ä,+ then	(ℬ(⌈𝐴⌉), 𝑖, 𝜁) RE 𝐴 for all natural numbers 𝑖 
and 𝜁. 

Proof: We prove (1) and (2) by induction on the syntactic complexity of 𝐴.  

Case 1. Let 𝐴 be atomic. REL1 of the definition of realizability states that  

(𝑎, 𝑖, 𝜁) RE A iff 𝑎	 = 	0 and ⊢od_�©ª 𝐴ä,+. 

Case 1.1. (1) follows directly from REL1. 

Case 1.2. Suppose ⊢� 𝐴ä,+. Define ℬ(⌈𝐴⌉) = 0. Then by REL1, (ℬ(⌈𝐴⌉), 𝑖, 𝜁) RE 𝐴. 

Case 2. Let 𝐴 = 𝐵 ∧ 𝐶 and assume (1) and (2) hold for 𝐵 and 𝐶.  

Case 2.1. Assume that (𝑎, 𝑖, 𝜁) RE 𝐵 ∧ 𝐶. Then (𝑎�, 𝑖, 𝜁) RE 𝐵 and (𝑎s, 𝑖, 𝜁) RE 𝐶. By the 
induction hypothesis, it follows that ⊢� 𝐵ä,+ and ⊢� 𝐶ä,+ that in turn entails 
⊢� 𝐵ä,+ ∧ 𝐶ä,+. 

Case 2.2. Assume ⊢� 𝐵ä,+ ∧ 𝐶ä,+. By the induction hypothesis, there are numbers 𝑎� =
ℬ(⌈𝑨⌉) and 𝑎s = ℬ(⌈𝐶⌉) such that (𝑎�, 𝑖, 𝜁) RE 𝐵 and (𝑎s, 𝑖, 𝜁) RE 𝐶. Define ℬ(⌈𝐵 ∧ 𝐶⌉) =
〈𝑎�, 𝑎s〉. Then (ℬ(⌈𝐵 ∧ 𝐶⌉, ), 𝑖, 𝜁) RE 𝐵 ∧ 𝐶. 

Case 3. Let 𝐴 = 𝐵 ∨ 𝐶 and assume (1) and (2) hold for 𝐵 and 𝐶.  

Case 3.1. Assume that (𝑎, 𝑖, 𝜁) RE 𝐵 ∨ 𝐶. Then either 𝑎 = 〈0, 𝑎s〉 and (𝑎s, 𝑖, 𝜁) RE 𝐵 which, 
by the induction hypothesis implies ⊢� 𝐶ä,+, or 𝑎 = 〈1, 𝑎s〉 and (𝑎s, 𝑖, 𝜁) RE 𝐶 which, by 
the induction hypothesis implies ⊢� 𝐶ä,+. In either case we get ⊢� 𝐵ä,+ ∨ 𝐶ä,+. 

Case 3.2. Assume that ⊢� 𝐵ä,+ ∨ 𝐶ä,+. We can apply Lemma II.2 to conclude that 
either ⊢� 𝐵ä,+ or ⊢� 𝐶ä,+, so, by the induction hypothesis, there is a 𝑏 = ℬ(⌈𝐵⌉) 
such that either (𝑏, 𝑖, 𝜁) RE 𝐵 or there is a 𝑐 = ℬ(⌈𝐶⌉) such that (𝑐, 𝑖, 𝜁) RE 𝐶. In the 
former case, define ℬ(⌈𝐵 ∨ 𝐶⌉) = 〈0, 𝑏〉 and in the latter case define ℬ(⌈𝐵 ∨ 𝐶⌉) = 〈1, 𝑐〉. 
Then (ℬ(⌈𝐵 ∨ 𝐶⌉), 𝑖, 𝜁) RE 𝐵 ∨ 𝐶. 

Case 4. Let 𝐴 = 𝐵 ⊃ 𝐶 and assume (1) and (2) hold for 𝐵 and 𝐶.  

Case 4.1. Assume that (𝑎, 𝑖, 𝜁) RE 𝐵 ⊃ 𝐶. Then for any 𝑏, if (𝑏, 𝑖, 𝜁) RE 𝐵 then 
(𝑎{𝑏}, 𝑖, 𝜁) RE 𝐶. 

Case 4.1.1. Suppose there is a 𝑏 such that (𝑏, 𝑖, 𝜁) RE 𝐵.that  Therefore (𝑎{𝑏}, 𝑖, 𝜁) 
RE 𝐶 and by the induction hypothesis, ⊢� 𝐶ä,+. Using the tautology ⊢� 𝐶ä,+ ⊃ (𝐵ä,+ ⊃
𝐶ä,+) we conclude ⊢� 𝐵ä,+ ⊃ 𝐶ä,+. 

Case 4.1.2. Suppose that there is no 𝑏 such that (𝑏, 𝑖, 𝜁) RE 𝐵. That is, for all 
𝑏, (𝑏, 𝑖, 𝜁) RE ¬𝐵. Claim: ⊢� ¬𝐵ä,+. By Lemma II.2, if not ⊢� ¬𝐵ä,+ then ⊢� 𝐵ä,+ but by 
the induction hypothesis this would imply that (ℬ(⌈𝐵⌉), 𝑖, 𝜁) RE 𝐵, contradicting 
the assumption of 4.1.2. Then, combining ⊢� ¬𝐵

ä,+ with the tautology ⊢� ¬𝐵ä,+ ⊃
(𝐵ä,+ ⊃ 𝐶ä,+) we get ⊢� 𝐵ä,+ ⊃ 𝐶ä,+. 

Case 4.2. Suppose that ⊢� (𝐵ä,+ ⊃ 𝐶ä,+). Suppose that (𝑏, 𝑖, 𝜁) RE 𝐵 for some 𝑏. By the 
induction hypothesis it follows that ⊢� 𝐵ä,+ and therefore ⊢� 𝐶ä,+. Applying the 
induction hypothesis to ⊢� 𝐶ä,+ we conclude that (ℬ(⌈𝐶⌉), 𝑖, 𝜁) RE 𝐶. Define 
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ℬ(⌈𝐵 ⊃ 𝐶⌉){𝑏} = ℬ(⌈𝐶⌉). It follows that (ℬ(⌈𝐵 ⊃ 𝐶⌉), 𝑖, 𝜁) RE 𝐵 ⊃ 𝐶. 

Case 5. Let 𝐴 = ¬𝐵.  

Case 5.1. Suppose (𝑎, 𝑖, 𝜁) RE ¬𝐵. This implies that for any natural number 𝑏 it is 
not the case that (𝑏, 𝑖, 𝜁) RE 𝐵. If ⊢� 𝐵ä,+ were the case then, by the induction 
hypothesis, (ℬ(⌈𝐵⌉), 𝑖, 𝜁) RE 𝐵 which would contradict our assumption. By the 
completeness of 𝒮 (Lemma II.2), it follows that ⊢� ¬𝐵ä,+. 

Case 5.2. Suppose that ⊢� ¬𝐵ä,+. If there was a natural number 𝑎 such that (𝑎, 𝑖, 𝜁) 
RE 𝐵 it would follow by the induction hypothesis that ⊢� 𝐵ä,+. But this would 
imply the inconsistency of 𝑇.* Therefore, if we define ℬ(⌈¬𝐵⌉) = 0, then 
(ℬ(⌈¬𝐵⌉), 𝑖, 𝜁) RE ¬𝐵. 

[End of proof of Lemma II.4] 

Lemma II.5 Let 𝑇	 = 	𝑅𝐶𝐴𝑀𝑂𝐷 Assume that ⊢� 𝐴 where A is the AE sentence 
∀𝑥s …∀𝑥¥∃𝑦s …∃𝑦6𝐵(𝑥s, … , 𝑥¥, 𝑦s, … , 𝑦6) in 𝐿od_ without K, or ∆, or 𝑧, and B is 
quantifier free.	There is an effectively computable function ℇ(𝐴) such that 
for any integers ζ and i,(ℇ(A), i, ζ) RE A. 

Proof: Since 𝑇 has the E-property there are n effectively computable 
functions 𝑆ä: 𝑇𝐸𝑅𝑀¥ → 𝑇𝐸𝑅𝑀, 𝑖 = 1, … , 𝑛 such that for all ts, … , t¥ ∈ TERM(z), 

 ⊢� B Cts
+ , … , t¥

+ , 𝑆s<ts
+ , … , t¥

+ =, … , 𝑆6<ts
+ , … , t¥

+ =D.  

Let 𝑠ë denote 𝑆ë(ts, … , t¥) for 𝑗 = 1, … , 𝑛, and let 𝐹(ts, … , t¥) denote B(ts, … , t¥, 𝑠s, … 𝑠6). 

By Lemma II.4, (ℬ(⌈𝐹(ts, … , t¥)⌉), 𝑖, 𝜁) RE B(ts, … , t¥, 𝑠s, … 𝑠6). 

By applying Definition REL7 n times, we successively get 

(En) (〈ℬ(⌈𝐹(ts, … , t¥)⌉), ⌈s6⌉〉, 𝑖, 𝜁) RE ∃𝑦6B(ts, … , t¥, 𝑠s, … 𝑠6Äs, 𝑦6), 

(En-1) (〈〈ℬ(⌈𝐹(ts, … , t¥)⌉), ⌈s6⌉〉, ⌈s6Äs⌉〉, 𝑖, 𝜁) RE ∃𝑦6Äs∃𝑦6B(ts, … , t¥, 𝑠s, … 𝑠6Äw, 𝑦6Äs, 𝑦6), 

… 

(E1) (〈… 〈〈ℬ(⌈𝐹(ts, … , t¥)⌉), ⌈s6⌉〉, ⌈s6Äs⌉〉 … ⌈ss⌉〉, 𝑖, 𝜁) RE ∃𝑦s … ∃𝑦6B(ts, … , t¥, 	𝑦s. . , 𝑦6). 

Define the function ℇ(𝐴) on TERM(z)ì as follows: for any ts, … , t¥ ∈ TERM(𝑧), 

ℇ(𝐴)	{⌈ts⌉, … , ⌈t¥⌉} = 〈… 〈〈ℬ(⌈𝐹(ts, … , t¥)⌉), ⌈s6⌉〉, ⌈s6Äs⌉〉 … ⌈ss⌉〉. 

By (E1),  

(Am) ((ℇ(𝐴)	{⌈ts⌉, … , ⌈t¥⌉}, 𝑖, 𝜁) RE ∃𝑦s … ∃𝑦6B(ts, … , t¥, 	𝑦s, . . , 𝑦6)  

and it follows by repeated applications REL6 that  

(Am-1) ((ℇ(𝐴)	{⌈ts⌉, … , ⌈t¥Äs⌉}, 𝑖, 𝜁) RE ∀𝑥¥∃𝑦s … ∃𝑦6B(ts, … , t¥Äs, x¥, 	𝑦s, . . , 𝑦6)), 

(Am-2) ((ℇ(𝐴)	{⌈ts⌉, … , ⌈t¥Äw⌉}, 𝑖, 𝜁) RE ∀𝑥¥Äs∀𝑥¥∃𝑦s … ∃𝑦6B(ts, … , t¥Äw, x¥Äs, x¥, 	𝑦s, . . , 𝑦6)), 

                         
* Actually only the consistency of the quantifier and ∆ free sentences of 𝑇 
(i.e. the computational assertions of 𝑇) are at issue. 
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… 

(A1) ((ℇ(𝐴)	{⌈ts⌉}, 𝑖, 𝜁) RE ∀𝑥w … ∀𝑥¥∃𝑦s … ∃𝑦6B(ts, xw, … , x¥Äs, x¥, 	𝑦s, . . , 𝑦6)), 

(A0) ((ℇ(𝐴)	, 𝑖, 𝜁) RE ∀𝑥s … ∀𝑥¥∃𝑦s … ∃𝑦6B(xs, xw, … , x¥Äs, x¥, 	𝑦s, . . , 𝑦6)) 

[End of proof] 

Theorem II.1: (Soundness of RCA) There is an integer valued function 𝐸(𝑛,𝑚) 
such that if P is a formal proof in 𝑅𝐶𝐴 of a sentence A and 𝑖	 ≥ 	∆(𝑃) and 𝜁	 >
	𝓂(𝑖	 +	∆(𝑃)) then (𝐸(⌈𝑃⌉, 𝜁), 𝑖, 𝜁) RE A. 

Proof: The proof proceeds by induction on the length of proof 𝑃	of 𝐴. If P has 
length 1 then it consists of one of the axioms of 𝑅𝐶𝐴.  

Case 1: Axiom Groups I, II, III, V, and VI. 

If A is in Axiom Group I, II, III, V, or VI, then it is an AE sentence to 
which Lemma II.5 applies. For these cases define 𝐸(⌈𝑃⌉, 𝜁) = 	ℇ(𝐴) . 

Case 2: Axiom Groups IV and VIII 

The induction schema IND(RCA) of Group VIII includes the induction schema 

IND(RA) of Group IV. Let A be the sentence 𝐵(0) 	∧ 	∀𝑛(𝐵(𝑛) ⊃ 𝐵(𝑛 + 1)) ⊃ ∀𝑛𝐵(𝑛), 
where 𝐵(𝑥) is any wff in 𝐿od_ with free variable x. 

Suppose (𝑎, 𝑖, 𝜁)	RE		𝐵(0) 	∧ 	∀𝑛(𝐵(𝑛) ⊃ 𝐵(𝑛 + 1)). By REL2, for 𝑎 = 〈𝑎�, 𝑎s〉,   

S0: (𝑎�, 𝑖, 𝜁)	RE		𝐵(0)	 and  

	(𝑎s, 𝑖, 𝜁)	RE		∀𝑛(𝐵(𝑛) ⊃ 𝐵(𝑛 + 1)). 

That is,  

	(𝑎s, 𝑖, 𝜁) RE ∀𝑥(N(x) ⊃ (𝐵(𝑥) ⊃ 𝐵(𝑥 + 1))).  

From Axiom Group II, for any natural number 𝑝, it follows that ⊢� 𝑁(𝑝), 
and, therefore by REL1,  

	(0, 𝑖, 𝜁) RE 𝑁(𝑝). 

From REL6, 

	(𝑎s{ï𝑝ð}, 𝑖, 𝜁) RE (N(𝑝) ⊃ (𝐵 C𝑝D ⊃ 𝐵 C𝑝 + 1D)) 

and therefore, from REL4, 

Sp+1: (𝑎s{ï𝑝ð , 0}, 𝑖, 𝜁) RE 𝐵(𝑝) ⊃ 𝐵(𝑝 + 1) for natural numbers 𝑝 ≥ 0. 

Define by recursion the function 

𝜑(𝑎, 0) = 𝑎�, 

𝜑(𝑎, 𝑝 + 1) = 𝑎s{ï𝑝ð , 0, 𝜑(𝑎, 𝑝)} for natural numbers 𝑝 ≥ 0. 

Claim:  
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(E1) (𝜑(𝑎, 𝑝), 𝑖, 𝜁) RE 𝐵(𝑝) for 𝑝 ≥ 0. 

From S0 we have 

	(𝜑(𝑎, 0), 𝑖, 𝜁) RE 𝐵(0). 

Now assume that 

	(𝜑(𝑎, 𝑝), 𝑖, 𝜁)RE 𝐵(𝑝). 

From Sp+1, (𝑎s{ï𝑝ð , 0}, 𝑖, 𝜁) RE 𝐵(𝑝) ⊃ 𝐵(𝑝 + 1) and therefore 

	(𝑎s{ï𝑝ð , 0, 𝜑(𝑎, 𝑝)}, 𝑖, 𝜁) RE 𝐵(𝑝 + 1).  

Now ñ𝑝 + 1ò = ñ𝑝 + 1ò, so by Lemma II.1,  

	(𝑎s{ï𝑝ð , 0, 𝜑(𝑎, 𝑝)}, 𝑖, 𝜁) RE 𝐵(𝑝 + 1), 

By the recursion definition of 𝜑, 𝜑(𝑎, 𝑝 + 1) = 𝑎s{ï𝑝ð , 0, 𝜑(𝑎, 𝑝)}, so 

	(𝜑(𝑎, 𝑝 + 1), 𝑖, 𝜁) RE 𝐵(𝑝 + 1). 

Assertion E1 now follows by ordinary induction on p. 

It then follows from E1 by Lemma II.1 that if 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧) and Û𝑡+Ý is the 
natural number p, then 

(E2) (𝜑(𝑎, 𝑝), 𝑖, 𝜁) RE 𝐵(𝑡). 

Define 𝐸(⌈𝑃⌉, 𝜁) to be the number such that 

𝐸(⌈𝑃⌉, 𝜁){𝑎, ⌈𝑡⌉, 𝑏} = 𝜑<𝑎, Û𝑡+Ý= = 	𝜑(𝑎, 𝒽(⌈𝑡⌉, 𝜁)), 

where 𝒽 is an effectively computable function defined so that 𝒽(⌈𝑡⌉, 𝜁) = Û𝑡+Ý. We 
now show that  

(𝐸(⌈𝑃⌉, 𝜁), 𝑖, 𝜁) RE 𝐵(0) 	∧ 	∀𝑛(𝐵(𝑛) ⊃ 𝐵(𝑛 + 1)) ⊃ ∀𝑛𝐵(𝑛).  

It suffices to show that  

(𝐸(⌈𝑃⌉, 𝜁){𝑎}, 𝑖, 𝜁) RE ∀𝑛𝐵(𝑛),  

where (𝑎, 𝑖, 𝜁) RE 𝐵(0) 	∧ 	∀𝑛(𝐵(𝑛) ⊃ 𝐵(𝑛 + 1)).  

∀𝑛𝐵(𝑛) is the sentence ∀𝑥(𝑁(𝑥) ⊃ 𝐵(𝑥)). Let 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧) and suppose (𝑏, 𝑖, 𝜁) RE 𝑁(𝑡) 
for some natural number b. Then Û𝑡+Ýis a natural number, say 𝑝. By definition of 
𝐸(⌈𝑃⌉, 𝜁), 

(𝐸(⌈𝑃⌉, 𝜁){𝑎, ⌈𝑡⌉, 𝑏}, 𝑖, 𝜁) = (𝜑<𝑎, Û𝑡+Ý=, 𝑖, 𝜁) = (𝜑(𝑎, 𝑝), 𝑖, 𝜁)  

which, by assertion E2, realizes 𝐵(𝑡). Unwinding this through REL4 and REL6, 
we see that (𝐸(⌈𝑃⌉, 𝜁){𝑎}, 𝑖, 𝜁) RE ∀𝑛𝐵(𝑛) is established. 

[End of proof of Case 2: Axiom Groups IV and VIII] 

Case 3: Axiom Group VII 
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Kl: 𝐾(0) ∧ ∀𝑛(𝐾(𝑛) 	∧ 	𝑛	 > 	0	 ⊃ 	𝐾(𝑛 − 1)	). 

Define 𝐸(⌈𝑃⌉) = 0. 

Since 0 = 〈0,0〉, we have to show that  

(a) (0, 𝑖, 𝜁) RE 𝐾(0) and  

(b) (0, 𝑖, 𝜁) RE ∀𝑛(𝐾(𝑛) ∧ 𝑛 > 0 ⊃ 𝐾(𝑛 − 1)), that is,  

  (0, 𝑖, 𝜁) RE ∀𝑥(𝑁(𝑥) ⊃ (𝐾(𝑥) ∧ 𝑥 > 0 ⊃ 𝐾(𝑥 − 1))). 

Proof of (a): ⊢� 𝐾(𝑖, 0) follows from MOD4. (a) then follows from this and from 
REL1. 

Proof of (b): Suppose 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧). To demonstrate (b) we must show that  

(0{⌈𝑡⌉}, 𝑖, 𝜁) RE 𝑁(𝑡) ⊃ (𝐾(𝑡) ∧ 𝑡 > 0 ⊃ 𝐾(𝑡 − 1)), that is, 

(0, 𝑖, 𝜁) RE 𝑁(𝑡) ⊃ (𝐾(𝑡) ∧ 𝑡 > 0 ⊃ 𝐾(𝑡 − 1)). 

Suppose  

(c) (𝑎, 𝑖, 𝜁) RE 𝑁(𝑡).  

From REL1, it follows that 𝑎	 = 	0 and ⊢� 𝑁(𝑡+), so there is an integer 𝑝 = Û𝑡+Ý. 
Since 0{𝑎} 	= 	0 we must show that 

(0, 𝑖, 𝜁) RE 𝐾(𝑡) ∧ 𝑡 > 0 ⊃ 𝐾(𝑡 − 1), 

that is, if 

(d) (0, 𝑖, 𝜁) RE 𝐾(𝑡) ∧ 𝑡 > 0 

then 

(e) (0, 𝑖, 𝜁) RE 𝐾(𝑡 − 1). 

From REL2 and REL1, (d) implies ⊢� 𝐾(𝑖, 𝑡+) and ⊢� 𝑡+ > 0, and consequently ⊢� 𝐾(𝑖, 𝑡+ −
1) from MOD4. (e) then follows by another application of REL1.  

[End of proof for K1] 

K2: ∀𝑥(𝐾(𝑥) ⊃ 𝑁(𝑥)) 

Define 𝐸(⌈𝑃⌉) = 0 and let 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧). We must show 

(0{⌈𝑡⌉}, 𝑖, 𝜁) RE 𝐾(𝑡) ⊃ 𝑁(𝑡), that is 

(a) (0, 𝑖, 𝜁) RE 𝐾(𝑡) ⊃ 𝑁(𝑡). 

Let (a, 𝑖, 𝜁) RE 𝐾(𝑡) for some a. Then ⊢� 𝐾(𝑖, 𝑡+). From MOD5 we can show ⊢� 𝑁(𝑡+) from 
which it follows from REL1 that (0{a}, 𝑖, 𝜁) RE 𝑁(𝑡) which in turn proves (a) and 
establishes the case for K2.  

K3: 𝐾(𝑝�) where 𝑝� is a given nalural number. 

Define 𝐸(⌈𝑃⌉) = 0. We must show that (0, 𝑖, 𝜁) RE 𝐾 C𝑝�D, that is, ⊢� 𝐾(𝑖, 𝑝�), but this 

is an follows from MOD3 and MOD6. 

K4: 𝑁(𝑧). 
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𝜁 is a natural number so ⊢� 𝑁 C𝜁D follows from Axiom Group II. Apply REL1 to get  

(0, 𝑖, 𝜁) RE 𝑁(𝑧). Define 𝐸(⌈𝑃⌉) = 0 and we are done with K4. 

K5: ∀𝑛(𝐾(𝑛) ⊃ ∆𝐾<ℱ(𝑛)=) 

Define 𝐸(⌈𝑃⌉) = 0. Need to show that 

(0, 𝑖, 𝜁) RE ∀𝑥(𝑁(𝑥) ⊃ (𝐾(𝑥) ⊃ ∆𝐾<ℱ(𝑥)=). 

Let 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧); we must show that 

(0{⌈𝑡⌉}, 𝑖, 𝜁) RE 𝑁(𝑡) ⊃ (𝐾(𝑡) ⊃ ∆𝐾(ℱ(𝑡)). 

Let (𝑎, 𝑖, 𝜁) RE 𝑁(𝑡) for some a. Then Û𝑡+ Ý is a natural number and 𝑎 must be 0 by 
REL1. 0{⌈𝑡⌉}{0} = 0 so we only need to show that  

(0, 𝑖, 𝜁) RE 𝐾(𝑡) ⊃ ∆𝐾(ℱ(𝑡)). 

Suppose (𝑏, 𝑖, 𝜁) RE 𝐾(𝑡) for some b. Then 𝑏 = 0 and 	⊢� 𝐾(𝑖, 𝑡+) by REL1, so, by MOD3, 
⊢� 𝐾(𝑖 + 1, ℱ(	𝑡+ 	)). Therefore (0, 𝑖 + 1, 𝜁) RE 𝐾(ℱ(𝑡)), so by REL8, (0, 𝑖, 𝜁) RE ∆𝐾(ℱ(𝑡)). 
Since 0{0} = 	0, it follows that (0, 𝑖, 𝜁) RE 𝐾(𝑡) ⊃ ∆𝐾(ℱ(𝑡)).  

[End of proof for K5]  

K6: 	K(𝑛) ⊃ ∆ô	∀𝑚(𝐾(𝑚) ⊃ 	ℱ	(𝑛, 𝑚) < z) for any  natural number 𝑛. 

The ∆-depth ∆({K6})	is 𝑛. The hypothesis of the Soundness Theorem asserts that i 
and 𝜁 are chosen so that 𝑖 ≥ 	𝑛 and 𝜁	 > 	𝓂(𝑖	 + 	𝑛). Therefore  

(1) ⊢� 𝜁 	> 	𝓂(𝑖	 + 	𝑛).  

Define 𝐸(⌈𝑃⌉) 	= 	0. 

Assume (𝑎, 𝑖, 𝜁) RE K(n). Then by REL1, 𝑎 = 0 and ⊢� 𝐾(𝑖, 𝑛) so, from MOD2 and MOD7 we 
get  

(2) ⊢� 𝑛 ≤ 𝓀<𝑖= ∧ 𝓀<𝑖= ≤ 𝓀(𝑖 + 𝑛).  

We have to show that (0, 𝑖, 𝜁) RE ∆ô	∀𝑚(𝐾(𝑚) ⊃ 	ℱ	(𝑛, 𝑚) < z), that is, (0, 𝑖 + 𝑛, 𝜁) RE 
∀𝑚(𝐾(𝑚) ⊃ 	ℱ	(𝑛, 𝑚) < z).  It suffices to show that for any natural number	𝑙,  

(3) (0, 𝑖 + 𝑛, 𝜁) RE 𝐾(𝑙) ⊃ ℱ	(𝑛, 𝑙) < z.  

Suppose (0, 𝑖 + 𝑛, 𝜁) RE 𝐾<𝑙=. Then ⊢� 𝐾(𝑖 + 𝑛, 𝑙), so by MOD7,  

(4) ⊢� 𝑙 ≤ 𝓀(𝑖 + 𝑛).  

ℱ is increasing so, from (2) and (4) we get ⊢� ℱ<𝑛, 𝑙= ≤ ℱ(𝓀<𝑖 + 𝑛=, 𝓀<𝑖 + 𝑛=) and by 
Mod8, ⊢� ℱ(𝓀<𝑖 + 𝑛=, 𝓀<𝑖 + 𝑛=) = 𝓂(𝑖 + 𝑛), so ⊢� ℱ<𝑛, 𝑙= ≤ 𝓂(𝑖 + 𝑛) which, combined with (1) 
shows that ⊢� 	ℱ<𝑛, 𝑙= < 𝜁 and therefore (0, 𝑖 + 𝑛, 𝜁) RE ℱ	(𝑛, 𝑙) < z. 

[End of proof for K6] 

Note that no constraint is placed on 𝑛 – it can be an arbitrary natural number. 
However, whatever the choice of n, under the hypothesis of the Soundness 
Theorem, 𝑛 is an “arrived” number by stage 𝑖. 
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K7: 𝐾<ℓ= ⊃ ∀𝑛(	𝐾(𝑛) ⊃ ∆ℓ	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, 𝑛) < z)) where ℓ is any natural number. 

The proof is similar to that of K6. Let 𝑃 be a proof consisting of the axiom 
K7. Then ∆(𝑃) = ℓ. Let 𝑒 denote 𝐸(⌈𝑃⌉). The hypothesis of the Soundness Theorem 
asserts that i and 𝜁 are choosen so that 𝑖	 > 	ℓ and 𝜁	 > 	𝓂(𝑖	 + 	ℓ). Therefore  

(1) ⊢� 𝓂<𝑖	 + 	ℓ= < 𝜁	. 

If (𝑎, 𝑖, 𝜁) RE 𝐾<ℓ= then 𝑎 = 0. We must have  

(𝑒{0}, 𝑖, 𝜁) RE ∀n(	𝐾(n) ⊃ ∆ℓ	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, n) < z)).  

Let 𝑠 ∈ 𝑇𝐸𝑅𝑀(𝑧) and assume that (0, 𝑖, 𝜁) RE 𝑁(𝑠). 

We need to show that 

(𝑒{0, ⌈𝑠⌉, 0}, 𝑖, 𝜁) RE (	𝐾(s) ⊃ ∆ℓ	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, s) < z)). 

Let (𝑏, 𝑖, 𝜁) RE 𝐾(s). Therefore 𝑏 = 0 and ⊢� 𝐾(𝑖, 𝑠+) so 

(2) ⊢� 𝑠+ ≤ 𝓀<𝑖= ∧ 𝓀<𝑖= ≤ 𝓀(𝑖 + ℓ). 

We now need to have 

(𝑒{0, ⌈𝑠⌉, 0,0}, 𝑖, 𝜁) RE ∆ℓ	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, s) < z), that is, 

(𝑒{0, ⌈𝑠⌉, 0, 0}, 𝑖 + ℓ, 𝜁) RE ∀m(𝐾(𝑚) ⊃ ℱ	(𝑚, s) < z). 

Let 𝑡 ∈ 𝑇𝐸𝑅𝑀(𝑧). Now suppose (0, 𝑖, 𝜁) RE 𝑁(𝑡). We need 

(𝑒{0, ⌈𝑠⌉, 0, 0, ⌈𝑡⌉, 0}, 𝑖 + ℓ, 𝜁) RE 𝐾(𝑡) ⊃ ℱ	(𝑡, 𝑠) < z. 

Let (𝑐, 𝑖 + ℓ, 𝜁) RE 𝐾(t). Therefore 𝑐 = 0 and ⊢� 𝐾(𝑖 + ℓ, 𝑡+), and, consequently  

(3) ⊢� 𝑡+ ≤ 𝓀(𝑖 + ℓ). 

Finally we need 

(𝑒{0, ⌈𝑠⌉, 0, 0, ⌈𝑡⌉, 0, 0}, 𝑖 + ℓ, 𝜁) RE ℱ	(𝑡, 𝑠) < z. 

From the definition of 𝓂, 𝓂(𝑖	 + 	ℓ) = ℱ(𝓀(𝑖 + ℓ), 𝓀(𝑖 + ℓ)) and therefore we have 

(4) ⊢� 𝓂<𝑖	 + 	ℓ= = ℱ	<𝓀(𝑖	 + 	ℓ), 𝓀(𝑖	 + 	ℓ)=. 

And from (2), (3), and (4)  

(5) ⊢� ℱ	<𝑡+ , 𝑠+= < 𝓂<𝑖	 + 	ℓ=. 

Combining (1) and (5) we get 

(6) ⊢� ℱ	<𝑡+ , 𝑠+= < 𝜁 

It follows that if we define 𝐸(⌈𝑃⌉) = 0, then 𝐸(⌈𝑃⌉){0, ⌈𝑠⌉, 0, 0, ⌈𝑡⌉, 0, 0} = 0, and hence 

(𝐸(⌈𝑃⌉), 𝑖 + ℓ, 𝜁) RE ℱ	(𝑡, 𝑠) < z and hence 

(𝐸(⌈𝑃⌉), 𝑖, 𝜁) RE 𝐾<ℓ= ⊃ ∀𝑛(	𝐾(𝑛) ⊃ ∆ℓ	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, 𝑛) < z)) 

as needed.  

[End of proof for K7] 

[End of proof of Case 3: Axiom Group VII] 

Case 4: Axiom Group IX 

BLEP and BMEP can be deduced from LEP. The proofs of these schemata have the 

same ∆ − 𝑑𝑒𝑝𝑡ℎ as the axioms themselves. One can therefore treat Case 4 as 
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consequences of the Soundness Theorem once we have established the Soundness 

Theorem for LEP and the other axioms groups (TPC and TL) and that realization 

is preserved under the rules of inference (MP, EI, UI, ∆I and ∆E). 

Proof of LEP: ∃𝑛𝐴(𝑛) ∧ 	∀𝑛	(𝐴	(𝑛) 	∨ ¬𝐴	(𝑛)	) ⊃ ∃𝑛(𝐴(𝑛) ∧ ∀𝑚(𝑚 < 𝑛 ⊃ ¬𝐴(𝑚)) 

Let 𝑃 = 	 〈∃𝑛𝐴(𝑛) ∧ 	∀𝑛	(𝐴	(𝑛) 	∨ ¬𝐴	(𝑛)	) ⊃ ∃𝑛(𝐴(𝑛) ∧ ∀𝑚(𝑚 < 𝑛 ⊃ ¬𝐴(𝑚))〉. We will 
define 𝐸(𝑃, 𝜁) such that for any 𝑖 and 𝜁, 

(𝐸(𝑃, 𝜁), 𝑖, 𝜁) RE ∃𝑛𝐴(𝑛) ∧ 	∀𝑛	(𝐴	(𝑛) 	∨ ¬𝐴	(𝑛)	) ⊃ ∃𝑛(𝐴(𝑛) ∧ ∀𝑚(𝑚 < 𝑛 ⊃ ¬𝐴(𝑚)). 

In the following realization statements, 𝑖 and 𝜁 will be understood so, for 
example, 𝑎 RE 𝑆 will stand for (𝑎, 𝑖, 𝜁) RE 𝑆. Also let 𝑒(𝜁) represent the value of 
𝐸(𝑃, 𝜁).  

Assume 

𝑎 RE ∃𝑛𝐴(𝑛) ∧ 	∀𝑛	(𝐴	(𝑛) 	∨ ¬𝐴	(𝑛).  

We must define 𝑒(𝜁) so that 

𝑒(𝜁){𝑎} RE ∃𝑛(𝐴(𝑛) ∧ ∀𝑚(𝑚 < 𝑛 ⊃ ¬𝐴(𝑚)). 

𝑎 RE ∃𝑛𝐴(𝑛) ∧ 	∀𝑛	(𝐴	(𝑛) 	∨ ¬𝐴	(𝑛) implies that 𝑎� RE ∃𝑛𝐴(𝑛) and 𝑎s RE 	∀𝑛	(𝐴	(𝑛) ∨
¬𝐴	(𝑛)). 

So 𝑎� = 〈𝑎��, 𝑎�s〉 where 𝑎�s = ⌈𝑠⌉ for some numerical valued term 𝑠 in 𝑇𝐸𝑅𝑀(𝑧) and 𝑎�� 
RE 𝑁(𝑠) ∧ 𝐴(𝑠). Therefore 𝑎�� = 〈0, 𝑎��s〉 where 0 RE 𝑁(𝑠) and 𝑎��s RE 𝐴(𝑠). 0 RE 𝑁(𝑠)  
implies that ⊢� 𝑁(𝑠+); let 𝜎+ be the natural number value of 𝑠+. Then 𝑎��s RE 

𝐴(	𝜎+	). 

Case 4.1: Suppose 𝜎+ = 0. It suffices to define 𝑒(𝜁){𝑎} = 〈𝑏, ⌈0⌉〉 where 𝑏 is such 
that  

𝑏 RE 𝑁(0) ∧ (𝐴(0) ∧ ∀𝑚<𝑚 < 0 ⊃ ¬𝐴(𝑚)=). 

This requires that 𝑏 = 〈𝑏�, 𝑏s〉 where 𝑏� = 0 and 𝑏s = 〈𝑎��s, 𝑐〉 and  

𝑐 RE ∀𝑚<𝑚 < 0 ⊃ ¬𝐴(𝑚)=. 

Claim: 𝑐 = 0 realizes ∀𝑚<𝑚 < 0 ⊃ ¬𝐴(𝑚)=. 

That is, for any term 𝑢 ∈ 𝑇𝐸𝑅𝑀(𝑧) 0{⌈𝑢⌉} RE N(u) ⊃ <𝑢 < 0 ⊃ ¬𝐴(𝑢)=. Note that 
if 𝑑 RE 𝑁(𝑢) then 𝑑 = 0 and ⊢� 𝑢+ ≥ 0. Thus we must show that 0{⌈𝑢⌉, 0} RE 𝑢 <
0 ⊃ ¬𝐴(𝑢). Since Û𝑢+Ý ≥ 0, 𝑢 < 0 is not realizable and hence 0{⌈𝑢⌉, 0} =
0	realizes 𝑢 < 0 ⊃ ¬𝐴(𝑢) by default, which established the claim. (Note 
that 0{⌈𝑢⌉, 0} = 0, since 𝜑� is the constant 0 function and therefore 
0{⌈𝑢⌉, 0} = 0{⌈𝑢⌉}{0} = 0{0} = 0.)  

So if we define 𝑒(𝜁){𝑎} = 〈〈0, 〈𝑎��s, 0〉〉, ⌈0⌉〉, then 𝑒(𝜁){𝑎} RE ∃𝑛(𝐴(𝑛) ∧ ∀𝑚<𝑚 < 𝑛 ⊃
¬𝐴(𝑚)=). 
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Case 4.2: Suppose 𝜎+ > 0. We are given that 𝑎��s RE 𝐴(	𝜎+	) and 𝑎s RE 	∀𝑛	(𝐴	(𝑛) ∨

¬𝐴	(𝑛)). 

Therefore for any term 𝑡 ∈ 	𝑇𝐸𝑅𝑀(𝑧), 𝑎s{⌈𝑡⌉} RE 	N(t) ⊃ 𝐴	(𝑡) 	∨ ¬𝐴	(𝑡). Let 0 RE	N(t). 
Then 𝑎s{⌈𝑡⌉, 0} RE 𝐴	(𝑡) 	∨ ¬𝐴	(𝑡) and ⊢� 𝑁(𝑡+).  

Define 𝐹Q(𝑎, 𝑏) = ø𝑎s
{⌈𝑡⌉, 0}	𝑖𝑓	𝑏 = ⌈𝑡⌉
0		𝑖𝑓	𝑏 ≠ ⌈𝑡⌉ . Note that: 

(a) if 𝐹Q(𝑎, ⌈𝑡⌉)� = 0 then 𝐹Q(𝑎, ⌈𝑡⌉)s RE 𝐴	(𝑡) and 
(b) if 𝐹Q(𝑎, ⌈𝑡⌉)� ≠ 0 then 𝐹Q(𝑎, ⌈𝑡⌉)s RE ¬𝐴	(𝑡). 

Case 4.2.1 Assume 	𝐹�<𝑎, ù0ú=� = 0. Then 𝐹�(𝑎, ù0ú)s = (𝑎sûù0ú, 0ü)s RE 𝐴	<0= and we can 

apply the above claim in Case 1 to conclude that 〈𝐹�(𝑎, ù0ú)s, 0〉 RE 𝐴<0= ∧

∀𝑚 C𝑚 < 0 ⊃ ¬𝐴(𝑚)D. Therefore if we define 𝑒(𝜁){𝑎} = 〈〈𝐹�(𝑎, ù0ú)s, 0〉, ù0ú〉 then  

𝑒(𝜁){𝑎} RE ∃𝑛(𝐴(𝑛) ∧ ∀𝑚(𝑚 < 𝑛 ⊃ ¬𝐴(𝑚)). 

Case 4.2.2 Assume 	𝐹�<𝑎, ù0ú=� ≠ 0. Let 𝒮(𝑎, 𝜁) = {𝑚 ≤ 𝜎+ ∧ ∀𝑙(𝑙 ≤ 𝑚 ⊃ 𝐹Á<𝑎, ù𝑙ú=� ≠ 0	)}. 

Since  

𝑎��s RE 𝐴(	𝜎	),  

it is not the case that 𝐹ýþ(𝑎, ï𝜎+ð)s RE ¬𝐴	 C𝜎+D and therefore 𝐹ýþ(𝑎, ï𝜎+ð)� = 0, 

that is, 𝜎+ ∉ 𝒮(𝑎, 𝜁). By the assumption of Case 4.2.2, 0 ∈ 𝒮(𝑎, 𝜁). Define the 
effectively calculable function: 

𝑔(𝑎, 𝜁) = 1 + max 	{𝑚:𝑚 ∈ 	𝒮(𝑎, 𝜁))}. 

By the definition of 𝑔(𝑎, 𝜁)	, 𝐹!(Æ,+) C𝑎, ï𝑔(𝑎, 𝜁)ðD
�
= 0 and therefore 𝐹!(Æ,+) C𝑎, ï𝑔(𝑎, 𝜁)ðD

s
RE 

𝐴	 C𝑔(𝑎, 𝜁)D. 

𝑒(𝜁){𝑎} will realize ∃𝑛(𝐴(𝑛) ∧ ∀𝑚(𝑚 < 𝑛 ⊃ ¬𝐴(𝑚)) if we set 

𝑒(𝜁){𝑎} = 〈〈𝐹!(Æ,+) C𝑎, ï𝑔(𝑎, 𝜁)ðD
s
, 𝑏Æ,+〉 , ï𝑔(𝑎, 𝜁)ð〉  

where 𝑏Æ,+ will be defined so that  
(1) 𝑏Æ,+ RE ∀𝑥(N(x) ⊃ (𝑥 < 𝑔(𝑎, 𝜁) ⊃ ¬𝐴(𝑥))). 

Let 𝑡 be any term in 𝑇𝐸𝑅𝑀(𝑧). (1) holds iff 

(2) 𝑏Æ,+{⌈𝑡⌉} RE N(t) ⊃ (𝑡 < 𝑔(𝑎, 𝜁) ⊃ ¬𝐴(𝑡)) which holds iff 

(3) 𝑏Æ,+{⌈𝑡⌉, 0} RE 𝑡 < 𝑔(𝑎, 𝜁) ⊃ ¬𝐴(𝑡) where 0 RE N(t) and therefore ⊢� N(𝑡+). 
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If 𝑑 RE 𝑡 < 𝑔(𝑎, 𝜁) then 𝑑 = 0 and ⊢� 𝑡+ < 𝑔(𝑎, 𝜁), that is,	Û𝑡+Ý < 𝑔(𝑎, 𝜁). 

From the definition of 𝑔(𝑎, 𝜁), Û𝑡+Ý < 𝑔(𝑎, 𝜁) implies that 𝐹Q(𝑎, ⌈𝑡⌉)s RE ¬𝐴	(𝑡). 
Therefore, if we define 𝑏Æ,+{⌈𝑡⌉, 0,0} = 𝐹Q(𝑎, ⌈𝑡⌉)s, then 𝑏Æ,+{⌈𝑡⌉, 0,0} RE ¬𝐴(𝑡) and for 
such a 𝑏Æ,+ we have 

𝑏Æ,+ RE ∀𝑥(N(x) ⊃ (𝑥 < 𝑔(𝑎, 𝜁) ⊃ ¬𝐴(𝑥))), as needed.  

[End of proof Case 4: Axiom Group IX] 

Case 5: Intuitionistic Predicate Calculus (IPC) 

The axioms of IPC can all be handled as in Kleene (1952, §82). In the following 

arguments, the expression "(𝑒, 𝑖, 𝜁) RE 𝐴" will be shortened to "𝑒 RE 𝐴" or “𝑒 
realizes 𝐴” and the presence of 𝑖 and 𝜁 will be understood. We shall make 
extensive use of Lemma K. 

Define 𝐸(⌈𝑃⌉) as follows. 

I1 𝑃 = {𝐴 ∧ 𝐵 ⊃ 𝐴}. Define 𝐸(⌈𝑃⌉){𝑎} = 𝑎­. 

I2 𝑃 = {𝐴 ∧ 𝐵 ⊃ 𝐵}. Define 𝐸(⌈𝑃⌉){𝑎} = 𝑎s. 

I3 𝑃 = {(𝐴 ⊃ 𝐵) ⊃ ((𝐴 ⊃ 𝐶) ⊃ (𝐴 ⊃ 𝐵 ∧ 𝐶)))}. Define 𝐸(⌈𝑃⌉){𝑏, 𝑐, 𝑎} = 〈𝑏{𝑎}, 𝑐{𝑎}〉. 

To establish I3 let 𝑏 realize 𝐴 ⊃ 𝐵. Therefore, for any 𝑎 that realizes 𝐴, 𝑏{𝑎} 
realizes 𝐵. For such a 𝑏, we must show that  

𝐸(⌈𝑃⌉){𝑏} RE (𝐴 ⊃ 𝐶) ⊃ (𝐴 ⊃ 𝐵 ∧ 𝐶). 

Suppose 𝑐 realizes 𝐴 ⊃ 𝐶. Then for any 𝑎 that realizes 𝐴, 𝑐{𝑎} must realize 𝐶. 
Finally we must show that for the selected 𝑏 and 𝑐,  

𝐸(⌈𝑃⌉){𝑏, 𝑐} realizes 𝐴 ⊃ 𝐵 ∧ 𝐶. 

Let 𝑎 be any realization of 𝐴. Then 𝐸(⌈𝑃⌉){𝑏, 𝑐, 𝑎} which, by the above definition, 
equals 〈𝑏{𝑎}, 𝑐{𝑎}〉, realizes  𝐵 ∧ 𝐶 (by Definition REL2)and therefore 𝐸(⌈𝑃⌉){𝑏, 𝑐} 
realizes 𝐴 ⊃ 𝐵 ∧ 𝐶. 

I4 𝑃 = {𝐴 ⊃ 𝐴 ∨ 𝐵}. Define 𝐸(⌈𝑃⌉){𝑎} = 〈0, 𝑎〉. 

I5 𝑃 = {𝐵 ⊃ 𝐴 ∨ 𝐵}. Define 𝐸(⌈𝑃⌉){𝑏} = 〈1, 𝑏〉 

I6 𝑃 = {(𝐴 ⊃ 𝐶) ⊃ ((𝐵 ⊃ 𝐶) ⊃ <(𝐴 ∨ 𝐵) ⊃ 𝐶=)}. Define 𝐸(⌈𝑃⌉){𝑎, 𝑏, 𝑐} = ø
𝑎{𝑐s}	𝑖𝑓	𝑐� = 0
𝑏{𝑐s}	𝑖𝑓	𝑐� ≠ 0.  

The argument proving I6 goes as follows. We must show that  

𝐸(⌈𝑃⌉) RE (𝐴 ⊃ 𝐶) ⊃ ((𝐵 ⊃ 𝐶) ⊃ <(𝐴 ∨ 𝐵) ⊃ 𝐶=).  

Suppose 𝑎 RE 𝐴 ⊃ 𝐶. By Definition REL4, for any 𝑑 that realizes 𝐴, 𝑎{𝑑} must 
realize 𝐶. 

Now we must show that for such an 𝑎,  

𝐸(⌈𝑃⌉){𝑎} RE (𝐵 ⊃ 𝐶) ⊃ <(𝐴 ∨ 𝐵) ⊃ 𝐶=. 

Suppose 𝑏 RE 𝐵 ⊃ 𝐶. Again, by Definition REL4, for any 𝑑 that realizes 𝐵, 𝑏{𝑑} 
must realize 𝐶. 



 

30 
 

So for such selected 𝑎 and 𝑏, it suffices to show that 

𝐸(⌈𝑃⌉){𝑎, 𝑏} RE (𝐴 ∨ 𝐵) ⊃ 𝐶. 

Suppose 𝑐 RE 𝐴 ∨ 𝐵. Then, if 𝑐� = 0, 𝑐s must realize 𝐴 so by the choice of 𝑎, 𝑎{𝑐s} 
realizes 𝐶. If 𝑐� ≠ 0, 𝑐s must realize 𝐵 so by the choice of 𝑏, 𝑏{𝑐s} realizes 𝐶. 

By definition 𝐸(⌈𝑃⌉){𝑎, 𝑏, 𝑐} = ø
𝑎{𝑐s}	𝑖𝑓		𝑐� = 0
𝑏{𝑐s}	𝑖𝑓		𝑐� ≠ 0, so it follows that 𝐸(⌈𝑃⌉){𝑎, 𝑏, 𝑐} realizes 

𝐶 and, hence, 𝐸(⌈𝑃⌉){𝑎, 𝑏} RE (𝐴 ∨ 𝐵) ⊃ 𝐶. 

I7 𝑃 = {𝐴 ⊃ 𝐴}. Define 𝐸(⌈𝑃⌉){𝑎} = 𝑎. 

I8 𝑃 = {𝐴 ⊃ (𝐵 ⊃ 𝐴)}. Define 𝐸(⌈𝑃⌉){𝑎, 𝑏} = 𝑎. 

I9 𝑃 = {(𝐴 ⊃ 𝐵) ⊃ (<𝐴 ⊃ (𝐵 ⊃ 𝐶)= ⊃ (𝐴 ⊃ 𝐶))}. Define 𝐸(⌈𝑃⌉){𝑏, 𝑐, 𝑎} = 𝑐{𝑎, 𝑏{𝑎}}. 

To demonstrate I9, let 𝑏 be any realization of 𝐴 ⊃ 𝐵 and choose any 𝑎 that 
realizes 𝐴. Then 𝑏{𝑎} RE 𝐵. We must show that  

𝐸(⌈𝑃⌉){𝑏} RE <𝐴 ⊃ (𝐵 ⊃ 𝐶)= ⊃ (𝐴 ⊃ 𝐶). 

Let 𝑐 realize 𝐴 ⊃ (𝐵 ⊃ 𝐶). To complete the demonstration of I9, we must show that 

𝐸(⌈𝑃⌉){𝑏, 𝑐} RE (𝐴 ⊃ 𝐶). 

By choice of 𝑐, for any 𝑎 that realizes 𝐴, 𝑐{𝑎} realizes 𝐵 ⊃ 𝐶. Then, for the 
above selected 𝑏, 𝑐{𝑎}û𝑏{𝑎}ü must realize 𝐶 since 𝑏{𝑎} realizes 𝐵. Therefore 
𝐸(⌈𝑃⌉){𝑏, 𝑐, 𝑎}, which is defined equal to 𝑐{𝑎}û𝑏{𝑎}ü, realizes	 𝐶 and, consequently, 
𝐸(⌈𝑃⌉){𝑏, 𝑐} RE (𝐴 ⊃ 𝐶). 

I10 𝑃 = {𝐴 ⊃ (¬𝐴 ⊃ 𝐵)}. Define 𝐸(⌈𝑃⌉){𝑎, 𝑏} = 0.  

Note that if 𝑎 RE 𝐴 then 𝐸(⌈𝑃⌉){𝑎, 𝑏} trivially realizes ¬𝐴 ⊃ 𝐵 since the 
hypothesis ¬𝐴 is not realizable by Definition REL5. 

I11 𝑃 = {(𝐴 ⊃ 𝐵) ⊃ ((𝐴 ⊃ ¬𝐵) ⊃ 	¬𝐴)}. Define 𝐸(⌈𝑃⌉){𝑎, 𝑏} = 0.  

Suppose 𝑎 RE 𝐴 ⊃ 𝐵. (Note that if there is no such 𝑎 then the axiom is trivially 
realized.) Suppose 𝑏 RE (𝐴 ⊃ ¬𝐵). (Again, if there is no such 𝑏 then	((𝐴 ⊃ ¬𝐵) ⊃
	¬𝐴) is trivialy realized.) Then, if there is a c which realizes 𝐴 then 𝑏{𝑐} RE 
¬𝐵 while 𝑎{𝑐} RE 𝐵 which is not possible. Therefore there is no 𝑐 which realizes 
𝐴 so 𝐸(⌈𝑃⌉){𝑎, 𝑏} = 0 RE ¬𝐴. 

I12 𝐴 ⊃ ((𝐵 ∧ ¬𝐵) ⊃ ¬𝐴). Define 𝐸(⌈𝑃⌉){𝑎} = 0. Note that 0 realizes (𝐵 ∧ ¬𝐵) ⊃ ¬𝐴 since 

(𝐵 ∧ ¬𝐵) is never realized. 

I13 𝑃 = {∀𝑥𝐴(𝑥) ⊃ 𝐴(𝑡)}, where 𝑡 is in 𝑇𝐸𝑅𝑀(𝑧). Define 𝐸(⌈𝑃⌉){𝑎} = 𝑎{⌈𝑡⌉}. 

By Definition REL6, 𝑎 realize ∀𝑥𝐴(𝑥) implies 𝑎{⌈𝑡⌉} realizes 𝐴(𝑡) and hence 
𝐸(⌈𝑃⌉){𝑎} = 𝑎{⌈𝑡⌉}  realizes 𝐴(𝑡). 

I14 𝑃 = {𝐴(𝑡) ⊃ ∃𝑥𝐴(𝑥)}, where 𝑡 is a term in 𝑇𝐸𝑅𝑀(𝑧). Define 𝐸(⌈𝑃⌉){𝑎} = 〈𝑎, ⌈𝑡⌉〉. If 𝑎 
RE 𝐴(𝑡) then, by Definition REL7, 𝐸(⌈𝑃⌉){𝑎} = 〈𝑎, ⌈𝑡⌉〉 RE ⊃ ∃𝑥𝐴(𝑥). 

I15 𝑃 = {∀𝑥(𝐴 ⊃ 𝐵) ⊃ (∀𝑥𝐴 ⊃ ∀𝑥𝐵)}. Define for any natural numbers 𝑎 and 𝑏 and for 
any 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧), 𝐸(⌈𝑃⌉){𝑎, 𝑏, ⌈𝑡⌉} = 𝑎{⌈𝑡⌉}{𝑏{⌈𝑡⌉}.  
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Suppose 𝑎 RE ∀𝑥(𝐴 ⊃ 𝐵). We must show that 𝐸(⌈𝑃⌉){𝑎} RE (∀𝑥𝐴 ⊃ ∀𝑥𝐵). Suppose 𝑏	𝑅𝐸	∀𝑥𝐴. 
We must show that 𝐸(⌈𝑃⌉){𝑎, 𝑏} RE ∀𝑥𝐵. Let 𝑡 be any term in 𝑇𝐸𝑅𝑀(𝑧). For the 
selected 𝑎, 𝑎{⌈𝑡⌉} RE 𝐴QR ⊃ 𝐵QR. For the selected 𝑏, 𝑏{⌈𝑡⌉} RE 𝐴QR. Therefore 
𝐸(⌈𝑃⌉){𝑎, 𝑏, ⌈𝑡⌉} = 𝑎{⌈𝑡⌉}{𝑏{⌈𝑡⌉}} RE 𝐵QR, and hence, 𝐸(⌈𝑃⌉){𝑎, 𝑏} RE ∀𝑥𝐵. 

I16 𝑃 = {∀𝑥(𝐴 ⊃ 𝐵) ⊃ (𝐴 ⊃ ∀𝑥𝐵)} if x not free in 𝐴. Define 𝐸(⌈𝑃⌉){𝑎, 𝑏, ⌈𝑡⌉} = 𝑎{⌈𝑡⌉}{𝑏} for 
any natural numbers 𝑎 and 𝑏 and any term 𝑡 int 𝑇𝐸𝑅𝑀[𝑧].  

Let 𝑎 RE ∀𝑥(𝐴 ⊃ 𝐵). Then for any 𝑡 int 𝑇𝐸𝑅𝑀(𝑧), 𝑎{⌈𝑡⌉} RE 𝐴 ⊃ 𝐵QR since x not free in	
𝐴.		We must show that 𝐸(⌈𝑃⌉){𝑎} RE 𝐴 ⊃ ∀𝑥𝐵, that is, for any natural number 𝑏, if 𝑏 
RE 𝐴, then 𝐸(⌈𝑃⌉){𝑎, 𝑏} RE ∀𝑥𝐵. For the selected 𝑎 and 𝑏 and any 𝑡 in 𝑇𝐸𝑅𝑀(𝑧), 
𝐸(⌈𝑃⌉){𝑎, 𝑏, ⌈𝑡⌉} = 𝑎{⌈𝑡⌉}{𝑏} RE 𝐵QR so 𝐸(⌈𝑃⌉){𝑎, 𝑏} RE ∀𝑥𝐵. 

I17 𝑃 = {∃𝑥(𝐴 ⊃ 𝐵) ⊃ (𝐴 ⊃ ∃𝑥𝐵)} if x not free in A. Define 𝐸(⌈𝑃⌉){𝑎, 𝑏} = 〈𝑎�{𝑏}, 𝑎s〉 for 
any natural numbers 𝑎 and 𝑏. 

Suppose 𝑎 RE ∃𝑥(𝐴 ⊃ 𝐵). By REL7, there is a term 𝑡 in 𝑇𝐸𝑅𝑀(𝑧), such that 𝑎 = 〈𝑎�, 𝑎s〉 
where 𝑎s = ⌈𝑡⌉ and 𝑎� RE 𝐴 ⊃ 𝐵QR. We must show that 𝐸(⌈𝑃⌉){𝑎} RE 𝐴 ⊃ ∃𝑥𝐵, that is, we 
must show that if 𝑏 RE 𝐴 then 𝐸(⌈𝑃⌉){𝑎, 𝑏} RE ∃𝑥𝐵. By REL4 and the choice of 𝑎, 
𝑎�{𝑏} RE 𝐵QR so 𝐸(⌈𝑃⌉){𝑎, 𝑏} = 〈𝑎�{𝑏}	, 𝑎s〉 RE ∃𝑥𝐵. 

I18 𝑃 = {𝑡 = 𝑠 ⊃ (𝐴(𝑡) ⊃ 𝐴(𝑠))} where 𝑠 and 𝑡 are terms in 𝑇𝐸𝑅𝑀(𝑧) and 𝑠	and 𝑡	 are free 
for 𝑥 in 𝐴(𝑥)	. Define 𝐸(⌈𝑃⌉){𝑎, 𝑏} = 𝑏. 

Let (𝑎, 𝑖, 𝜁) RE 𝑡 = 𝑠. We must show that (𝐸(⌈𝑃⌉){𝑎}, 𝑖, 𝜁) RE 𝐴(𝑡) ⊃ 𝐴(𝑠). By REL1, ⊢� 	𝑡+ =
	𝑠+, so 	𝑡+ and 	𝑠+ have equal values. By Lemma II.1, for any natural number 𝑏, 
(𝑏, 𝑖, 𝜁) RE 𝐴(𝑡) iff (𝑏, 𝑖, 𝜁) RE 𝐴(𝑠). Consequently (𝑏, 𝑖, 𝜁) RE 𝐴(𝑡) implies 
(𝐸(⌈𝑃⌉){𝑎, 𝑏}, 𝑖, 𝜁) = (𝑏, 𝑖, 𝜁)  RE 𝐴(𝑠), so (𝐸(⌈𝑃⌉){𝑎}, 𝑖, 𝜁) RE 𝐴(𝑡) ⊃ 𝐴(𝑠). 

I19 𝑃 = {∀𝑥(𝑥 = 𝑥)}. Define 𝐸(⌈𝑃⌉, 𝜁){⌈𝑡⌉} = 0. I19 follows immediately from REL6 and 
REL1. 

I20 𝑃 = {∀𝑥𝑦(𝑥 = 𝑦 ∨ ¬𝑥 = 𝑦)}. For 𝑡, 𝑠	 ∈ 	𝑇𝐸𝑅𝑀(𝑧),	 define  

𝐸(⌈𝑃⌉){𝑡, 𝑠} = #
〈0,0〉	𝑖𝑓	 ⊢� 𝑡+ = 	𝑠+

〈1,0〉	𝑖𝑓	 ⊢� 	¬𝑡+ = 	𝑠+
. 

We must show that for any 𝑡, 𝑠 ∈ 𝑇𝐸𝑅𝑀(𝑧), 𝐸(⌈𝑃⌉){⌈𝑡⌉, ⌈𝑠⌉} RE 𝑡 = 𝑠 ∨ ¬𝑡 = 𝑠. 	𝑡+ = 	𝑠+ is 
decidable in 𝑇 (see Lemma II.2.) If ⊢� 𝑡+ = 	𝑠+ then (𝐸(⌈𝑃⌉){⌈𝑡⌉, ⌈𝑠⌉})� = 0 and 
(𝐸(⌈𝑃⌉){⌈𝑡⌉, ⌈𝑠⌉})s = 0 RE 𝑡 = 𝑠, by REL1. Therefore 𝐸(⌈𝑃⌉){⌈𝑡⌉, ⌈𝑠⌉} RE 𝑡 = 𝑠 ∨ ¬𝑡 = 𝑠 by 
Definition REL3. If ⊢� ¬	𝑡+ = 	𝑠+ then (𝐸(⌈𝑃⌉){⌈𝑡⌉, ⌈𝑠⌉})� = 1. There is no 𝑎 which 
realizes 𝑡 = 𝑠 because if there were, by REL1, 	𝑡+ = 	𝑠+ would be provable in 𝑇 and 
𝑇 would be inconsistent. Therefore (𝐸(⌈𝑃⌉){⌈𝑡⌉, ⌈𝑠⌉})s = 0 RE ¬𝑡 = 𝑠 and hence 
𝐸(⌈𝑃⌉){⌈𝑡⌉, ⌈𝑠⌉} RE 𝑡 = 𝑠 ∨ ¬𝑡 = 𝑠 by Definition REL3. 

[End of proof for Intuitionistic Predicate Calculus] 

Case 6: Tense Logic(TL) 

∆1 𝑃 = {∆𝐴 ∧ ∆𝐵 ≡ ∆(𝐴 ∧ 𝐵)}. Define 𝐸(⌈𝑃⌉){𝑎} = 	𝑎. Note that 
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(𝑎, 𝑖, 𝜁) RE ∆𝐴 ∧ ∆𝐵  

iff (𝑎�, 𝑖, 𝜁) RE ∆𝐴 and (𝑎s, 𝑖, 𝜁)RE ∆𝐵 

iff (𝑎�, 𝑖 + 1, 𝜁) RE 𝐴 and (𝑎s, 𝑖 + 1, 𝜁)RE 𝐵 

iff (𝑎, 𝑖 + 1, 𝜁) RE 𝐴 ∧ 𝐵 

iff (𝑎, 𝑖, 𝜁)RE ∆(𝐴 ∧ 𝐵). 

∆2 𝑃 = {∆𝐴 ∨ ∆𝐵 ≡ ∆(𝐴 ∨ 𝐵)}. Define 𝐸(⌈𝑃⌉){𝑎} = 	𝑎. Note that 

(𝑎, 𝑖, 𝜁)RE ∆𝐴 ∨ ∆𝐵 

iff 𝑎� = 0 and (𝑎s, 𝑖, 𝜁) RE ∆𝐴, or 𝑎� ≠ 0 and (𝑎s, 𝑖, 𝜁) RE ∆𝐵 

iff 𝑎� = 0  and (𝑎s, 𝑖 + 1, 𝜁) RE 𝐴, or 𝑎� ≠ 0 and (𝑎s, 𝑖 + 1, 𝜁) RE 𝐵 

iff (𝑎, 𝑖 + 1, 𝜁) RE 𝐴 ∨ 𝐵  

iff (𝑎, 𝑖, 𝜁) RE ∆(𝐴 ∨ 𝐵). 

∆3 𝑃{(∆𝐴 ⊃ ∆𝐵) ≡ ∆(𝐴 ⊃ 𝐵)}. Define 𝐸(⌈𝑃⌉){𝑎} = 	𝑎. 

Assume (𝑎, 𝑖, 𝜁) RE ∆𝐴 ⊃ ∆𝐵. To show that (𝑎, 𝑖, 𝜁) RE ∆(𝐴 ⊃ 𝐵) we must show that 

(𝑎, 𝑖 + 1, 𝜁) RE 𝐴 ⊃ 𝐵. Suppose (𝑏, 𝑖 + 1, 𝜁) RE 𝐴. Then (𝑏, 𝑖, 𝜁) RE ∆𝐴 so 

(𝑎{𝑏}, 𝑖, 𝜁) RE ∆𝐵 and therefore (𝑎{𝑏}, 𝑖 + 1, 𝜁) RE 𝐵. We conclude that 

(𝑎, 𝑖 + 1, 𝜁) RE (𝐴 ⊃ 𝐵), so (𝑎, 𝑖, 𝜁) RE ∆(𝐴 ⊃ 𝐵). This argument is easily reversed. 

∆4 𝑃 = {(∆¬𝐴) ≡ ¬∆𝐴}. Define 𝐸(⌈𝑃⌉){𝑎} = 	𝑎. 

 (𝑎, 𝑖, 𝜁) RE ∆¬𝐴 

iff (𝑎, 𝑖 + 1, 𝜁) RE ¬𝐴 t 

iff for all 𝑏, not (𝑏, 𝑖 + 1, 𝜁) RE 𝐴 

iff for all 𝑏, not	(	𝑏, 𝑖, 𝜁) RE ∆𝐴,  

iff (𝑎, 𝑖, 𝜁) RE ¬∆𝐴. 

∆5 𝑃 = {∆∀𝑥𝐴(𝑥) ≡ ∀𝑥∆𝐴(𝑥)}. Define 𝐸(⌈𝑃⌉){𝑎} = 	𝑎. 

 (𝑎, 𝑖, 𝜁) RE ∆∀x𝐴(𝑥) 

iff (𝑎, 𝑖 + 1, 𝜁) RE ∀x𝐴(𝑥) 

iff for any 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧), (𝑎{⌈𝑡⌉}, 𝑖 + 1, 𝜁) RE A(	𝑡+) 

iff for any 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧),	(𝑎{⌈𝑡⌉}, 𝑖, 𝜁) RE ∆A(	𝑡+) 

iff (𝑎, 𝑖, 𝜁) RE ∀𝑥∆A(𝑥).  

∆6 𝑃 = {∆∃𝑥𝐴(𝑥) ≡ ∃𝑥∆𝐴(𝑥)}. Define 𝐸(⌈𝑃⌉){𝑎} = 	𝑎 

(𝑎, 𝑖, 𝜁) RE ∆∃𝑥𝐴(𝑥) 

iff (𝑎, 𝑖 + 1, 𝜁) RE ∃𝑥𝐴(𝑥) 

iff for some 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧) 𝑎 = 〈𝑎�, ⌈𝑡⌉〉 and (𝑎�, 𝑖 + 1, 𝜁) RE 𝐴<	𝑡+= 

iff for some 𝑡	 ∈ 	𝑇𝐸𝑅𝑀(𝑧) 𝑎 = 〈𝑎�, ⌈𝑡⌉〉 and (𝑎�, 𝑖, 𝜁) RE ∆𝐴<	𝑡+= so  

iff (𝑎, 𝑖, 𝜁) RE ∃𝑥∆𝐴(𝑥).  

[End of proof for Tense Logic] 
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Case 7: Persistence of Atomic Truths schema (PAT). 

Let 𝐵 be the sentence ∀𝑥s. … 𝑥6(𝐴 ⊃ ∆𝐴) where 𝐴 is a quantifier free wff in 𝐿od_ not 
containing the predicate 𝐾 and with free variables 𝑥s. … 𝑥6. Let 𝑃 = {∀𝑥s. … 𝑥6(𝐴 ⊃
∆𝐴)}. 

∆(𝑃) = 1. 

Given any terms 𝑡s, … , 𝑡6 in 𝑇𝐸𝑅𝑀(𝑧), we must define 𝐸(⌈𝑃⌉ so that  

(𝐸(⌈𝑃⌉, 𝜁){ù𝑡s,ú … , ⌈𝑡6⌉}, 𝑖, 𝜁) RE (𝐴RÇ.…RÈ
QÇ,…,QÈ ⊃ ∆𝐴RÇ.…RÈ

QÇ,…,QÈ ).  

That is, we must show that for any 𝑎 such that (𝑎, 𝑖, 𝜁) RE 𝐴RÇ.…RÈ
QÇ,…,QÈ then 

 (𝐸(⌈𝑃⌉, 𝜁){ù𝑡s,ú … , ⌈𝑡6⌉, 𝑎}, 𝑖, 𝜁) RE ∆𝐴RÇ.…RÈ
QÇ,…,QÈ. 

Now by Lemma II.4 part(2), (𝑎, 𝑖, 𝜁) RE 𝐴RÇ.…RÈ
QÇ,…,QÈ implies ⊢� 𝐴RÇ.…RÈ

QÇ,…,QÈ,ä,+. Note that

(1) for any 𝑖 and 𝑗, 𝐴RÇ.…RÈ
QÇ,…,QÈ,ä,+ = 𝐴RÇ.…RÈ

QÇ,…,QÈ,$,+  

because A does not contain 𝐾. Therefore it follows that ⊢� 𝐴RÇ.…RÈ
QÇ,…,QÈ,ä s,+.  

By Lemma II.4 part (2),  

(ℬ(ï𝐴RÇ.…RÈ
QÇ,…,QÈ,ä s,+ð), 𝑖 + 1, 𝜁) RE 𝐴RÇ.…RÈ

QÇ,…,QÈ.  

Furthermore, because of (1) above, the value of ℬ(ï𝐴RÇ.…RÈ
QÇ,…,QÈ,ä s,+ð is independent of 𝑖. 

Define 𝐸(⌈𝑃⌉, 𝜁){⌈𝑡s⌉, … , ⌈𝑡6⌉, a} = ℬ(ï𝐴RÇ.…RÈ
QÇ,…,QÈ,ä s,+ð). Then  

(𝐸(⌈𝑃⌉, 𝜁){⌈𝑡s⌉, … , ⌈𝑡6⌉, 𝑎}, 𝑖 + 1, 𝜁) RE 𝐴RÇ.…RÈ
QÇ,…,QÈ  

and therefore  

(𝐸(⌈𝑃⌉, 𝜁){⌈𝑡s⌉, … , ⌈𝑡6⌉, 𝑎}, 𝑖, 𝜁) RE ∆𝐴RÇ.…RÈ
QÇ,…,QÈ  

and so  

(𝐸(⌈𝑃⌉, 𝜁), 𝑖, 𝜁) RE ∀𝑥s. … 𝑥6(𝐴 ⊃ ∆𝐴). 

[End of proof for PAT][STOP] 

Note: In the special case the 𝐴 is a sentence not containing 𝐾 or 𝑧, 
𝐸(⌈𝑃⌉, 𝜁) does not depend on 𝜁. 

This finishes the proof of the Soundness Theorem for proofs of length 1. 

Suppose the length of proof 𝑃 is greater than 1. We assume that the Soundness 
theorem has been proved for all proofs 𝑄 whose length is less than that of P. 
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The last statement A of P is either an axiom or follows from the previous 
statements by one of the rules of inference. If A is an Axiom then let Q be the 
proof 𝑄 = {𝐴}. The ∆ − 𝑑𝑒𝑝𝑡ℎ(𝑄) ≤ ∆ − 𝑑𝑒𝑝𝑡ℎ(𝑃). Since 𝑖 ≥ ∆ − 𝑑𝑒𝑝𝑡ℎ(𝑃) and 𝜁 > 𝓂(𝑖 + ∆ −
𝑑𝑒𝑝𝑡ℎ(𝑃)), the same is true for Q. The Soundness Theorem has already been proved 
for Q so define 𝐸(⌈𝑃⌉, 𝜁) = 𝐸(⌈𝑄⌉, 𝜁).  

It remains to consider the 4 rules of inference. 

Modus Ponens Suppose 𝑃 ⊢� 𝐴 consists of two sub proofs 𝑄1 ⊢� 𝐵 and 𝑄2 ⊢� 𝐵 ⊃ 𝐴 
followed by an application of MP to obtain A. By the hypothesis of the Main  
Theorem, 𝑖 ≥ ∆(𝑃) and 𝜁 > 𝓂(𝑖 + ∆(𝑃) and, since the ∆(𝑄1) and ∆(𝑄2) are less than of 
equal to ∆(𝑃), the Soundness Theorem induction hypothesis applies to Q1 and Q2 
so (𝐸(⌈𝑄1⌉, 𝜁), 𝑖, 𝜁) RE 𝐵 and (𝐸(⌈𝑄2⌉, 𝜁), 𝑖, 𝜁) RE 𝐵 ⊃ 𝐴. Therefore  

(𝐸(⌈𝑄2⌉, 𝜁){𝐸(⌈𝑄1⌉, 𝜁)}, 𝑖, 𝜁) RE 𝐴. Define 𝐸(⌈𝑃⌉, 𝜁) = 	𝐸(⌈𝑄2⌉, 𝜁){𝐸(⌈𝑄1⌉, 𝜁)}. 

Universal Generalization  Suppose 𝑃 ⊢� ∀𝑥𝐴(𝑥) consists of a subproof 𝑄 ⊢� 𝐴(𝑥) 
followed by an application of UG to obtain ∀𝑥𝐴(𝑥).  ∆(𝑃) ≥ ∆(𝑄). Let t be any term 
in 𝑇𝐸𝑅𝑀(𝑧). Let 𝑄QR be the result of replacing all free occurrences of x in 
𝑄 ⊢� 𝐴(𝑥) by t.	* Then 𝑄QR ⊢� 𝐴(𝑡)	 and ∆(𝑃) ≥ ∆(𝑄QR).  

If 𝑖 ≥ ∆(𝑃) and 𝜁 > 𝓂(𝑖 + ∆(𝑃)) then 𝑖 ≥ ∆(𝑄QR) and 𝜁 > 𝓂(𝑖 + ∆(𝑄QR) so we can apply the 
Soundness Theorem induction hypothesis to 𝑄QR, that is (𝐸(⌈𝑄QR⌉, 𝜁), 𝑖, 𝜁) RE 𝐴(𝑡). 
Define 𝐸(⌈𝑃⌉, 𝜁){⌈𝑡⌉} = 𝐸(⌈𝑄QR⌉, 𝜁). Since t was any term in 𝑇𝐸𝑅𝑀(𝑧), it follows from 
Definition REL6, (𝐸(⌈𝑃⌉, 𝜁), 𝑖, 𝜁) RE ∀𝑥𝐴(𝑡). 

∆-Introduction Suppose 𝑃: ⊢� ∆𝐴 contains a subproof  𝑄: ⊢� 𝐴 followed by an 
application of ∆I. That is: 

𝑄: ⊢� 𝐴 
------∆I 

𝑃: ⊢� ∆𝐴 

∆(𝑃) ≥ ∆(𝑄) + 1. Assuming 𝑖 ≥ ∆(𝑃) and 𝜁 > 𝓂(𝑖 + ∆(𝑃)) it follows that 𝑖 + 1 > ∆(𝑄) and 
𝜁 > 𝓂(𝑖 + 1 + ∆(𝑄)) so we can apply the Soundness Theorem induction hypothesis to 
𝑄 and conclude that (𝐸(⌈𝑄⌉, 𝜁), 𝑖 + 1, 𝜁) RE 𝐴 and therefore, if we define 𝐸(⌈𝑃⌉, 𝜁) =
𝐸(⌈𝑄⌉, 𝜁), it follows that (𝐸(⌈𝑃⌉, 𝜁), 𝑖, 𝜁) RE ∆𝐴. 

                         
* Two free occurrences O1 and O2 of a variable v in a proof Q are directly 
identified iff one occurs in the hypothesis of a rule of inference of Q and 
the other in the consequence of that rule of inference. Two free occurrences 

O1 and On of a variable v in a proof Q are identified iff there is a sequence 
𝑂s, 𝑂w, … , 𝑂6	 of directly identified occurrence 𝑂ä, 𝑂ä s of v in Q, 𝑖 = 1, . . , 𝑛 − 1. The 
expression 𝑄QR represents the result of replacing with term 𝑡 all free of 
occurrence of 𝑥 in Q that can be identified with a free occurrence of 𝑥 in the 
conclusion of Q.   
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∆-Elimination. Suppose 𝑃: ⊢� 𝐴 consists of a sub proof 𝑄: ⊢� ∆A followed by an application 
of ∆E. That is: 

𝑄: ⊢� ∆𝐴 
------∆E 

𝑃: ⊢� 𝐴 

Therefore ∆(𝑃) ≥ ∆(𝑄) + 1. Assume 𝑖 ≥ ∆(𝑃) and 𝜁 > 𝓂(𝑖 + ∆(𝑃)). So 𝑖 − 1 ≥ ∆(𝑃) − 1 ≥ ∆(𝑄) 
and 𝜁 > 𝓂<𝑖 + ∆(𝑃)= ≥ 𝓂(𝑖 + ∆(𝑄) + 1)) > 𝓂(𝑖 − 1 + ∆(𝑄))	. By the Soundness Theorem 
induction hypothesis, (𝐸(⌈𝑄⌉, 𝜁), 𝑖 − 1, 𝜁) RE ∆𝐴, and therefore by REL8, (𝐸(⌈𝑄⌉, 𝜁), 𝑖, 𝜁) 
RE 𝐴, so it suffices to define 𝐸(⌈𝑃⌉, 𝜁) = 𝐸(⌈𝑄⌉, 𝜁). 

[End of proof of the Soundness Theorem] 

Note: The dependency of 𝐸(⌈𝑃⌉, 𝜁) on 𝜁 is only required if the proof 𝑃 uses the 
induction axiom or LEP or BMEP or MLEP ot PAT. As a result we get the immediate 

corollary: 

Corollary II.1 (Soundness of RCA without IND, LEP, BMEP, MLEP, PAT) There is 

an integer valued function 𝐸Ä(𝑛) such that if P is a formal proof without IND, 
LEP, BMEP, MLEP, PAT in 𝑅𝐶𝐴 of a sentence A and 𝑖	 ≥ 	∆(𝑃) and 𝜁	 > 	𝓂(𝑖	 +	∆(𝑃)) 
then (𝐸Ä(⌈𝑃⌉), 𝑖, 𝜁) RE A. As a simple consequence, 𝐸Ä(⌈𝑃⌉) continues to realize 𝐴 
for any 𝑖s ≥ 𝑖 and 𝜁s ≥ 𝜁. 

The undecidability of 𝐾(𝑥) in 𝑅𝐶𝐴 follows from the consistency of 𝑅𝐶𝐴𝑀𝑂𝐷.  

Theorem II.2 Assuming 𝑅𝐶𝐴𝑀𝑂𝐷 is consistent, there is no proof of ∀𝑛(𝐾(𝑛) ∨
¬𝐾(𝑛)) in 𝑅𝐶𝐴. 

Proof: Suppose ⊢od_ ∀𝑛(𝐾(𝑛) ∨ ¬𝐾(𝑛)). Since ⊢od_ 0 ≤ 𝑧 ∧ 𝐾(0) (see Theorem I.1 
(1),(5)) the hypothesis of BMEP for the predicate 𝐾(𝑥), namely 

(0 ≤ 𝑧 ∧ 𝐾(0) ∧ ∀𝑛(𝑛 < 𝑧 ⊃ 𝐾(𝑛) ∨ ¬𝐾(𝑛))),  

would be provable in 𝑅𝐶𝐴. Then we could apply BMEP and conclude 

(1) ⊢od_ ∃𝑛<𝑛 ≤ 𝑧 ∧ 𝐾(𝑛) ∧ (¬𝐾(𝑛 + 1) ∨ 𝑛 + 1 > 𝑧)=. 

From Theorem I.1 (4) we know that, ⊢od_ ∀𝑛(𝐾(𝑛) ⊃ 𝑛 < 𝑧). Combining this with (1) 
we see that there would be a proof 𝑃 of 

(2) ⊢od_ ∃𝑛(𝐾(𝑛) ∧ ¬𝐾(𝑛 + 1)).  

Choose 𝜁 > 𝑚(1 + 2 ∗ ∆(𝑃)) and define 𝑖 = ∆(𝑃). Then, for 𝑗 = 𝑖 and 𝑗 = 𝑖 + 1, 𝑗 is 
greater than or equal to ∆(𝑃) and 𝜁 > 𝓂(𝑗 + ∆(𝑃)). Therefore, by the Soundness 
Theorem, 

(𝐸(⌈𝑃⌉, 𝜁), 𝑗, 𝜁) RE ∃𝑛(𝐾(𝑛) ∧ ¬𝐾(𝑛 + 1))	 for 𝑗 = 𝑖 and 𝑗 = 𝑖 + 1.  

This means that for some term 𝑡 ∈ 𝑇𝐸𝑅𝑀(𝑧), 𝐸(⌈𝑃⌉, 𝜁) = 〈𝑎, ⌈𝑡⌉〉, where (𝑎, 𝑗, 𝜁) RE 𝐾(𝑡) ∧
¬𝐾(𝑡 + 1). From definition REL1, this implies 

(3) ⊢od_�©ª 𝐾<𝑖, 𝑡
+= ∧ ¬𝐾(𝑖, 𝑡+ + 1) ∧ 𝐾<𝑖 + 1, 𝑡+= ∧ ¬𝐾(𝑖 + 1, 𝑡+ + 1),  
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so in particular,  

(4) ⊢od_�©ª 𝐾<𝑖, 𝑡
+=  

and  

(5) ⊢od_�©ª ¬𝐾(𝑖 + 1, 𝑡+ + 1).  

But ⊢od_�©ª 𝐾<𝑖, 𝑡
+= ⊃ 𝐾<𝑖 + 1, ℱ(𝑡+)= from MOD3 and ⊢od_�©ª ℱ(𝑡

+) ≥ 	 𝑡+ + 1 from Theorem 
I.1(6) so, applying MOD4, we can show that  

(6) ⊢od_�©ª 𝐾<𝑖, 𝑡
+= ⊃ 𝐾<𝑖 + 1, 𝑡+ + 1= 

Combining (4) with (6) yields 

(7) ⊢od_�©ª 𝐾<𝑖 + 1, 𝑡+ + 1=. 

which contradicts (5). 

[End of proof] 

The analogous argument for ¬𝐾(𝑛) combined with the decidablity of 𝐾(𝑛,𝑚) in 
𝑅𝐶𝐴𝑀𝑂𝐷, can be used to establish the undecidability of ¬𝐾(𝑛). 

Lemma II.6 For a given natural number 𝑛 ≥ 1 and a proof 𝑄:	𝒢 ⊢od_ 𝐴 ⊃ 𝐵 with 
assumptions 𝒢 we can construct a proof ℛ(𝑄, 𝑛): 𝒢 ⊢od_ ∆6𝐴 ⊃ ∆6𝐵 with ∆ − 𝑑𝑒𝑝𝑡ℎ 
∆(ℛ(𝑄, 𝑛)) = 	𝑛 + ∆(𝑄). 

Proof: We first construct ℛ(𝑄, 1). 

𝑄:	𝒢 ⊢od_ 𝐴 ⊃ 𝐵 

----------------∆I 

𝒢 ⊢od_ ∆(𝐴 ⊃ 𝐵)    ⊢od_ ∆(𝐴 ⊃ 𝐵) ⊃ (∆𝐴 ⊃ ∆𝐵) 

--------+----------------------------MP 

ℛ(𝑄, 1): 𝒢 ⊢od_ ∆𝐴 ⊃ ∆𝐵 

Note that ∆(ℛ(𝑄, 1)) = 1 + ∆(𝑄). 

Given ℛ(𝑄, 𝑛): 𝒢 ⊢od_ ∆6𝐴 ⊃ ∆6𝐵 such that ∆(ℛ(𝑄, 𝑛)) = 	𝑛 + ∆(𝑄), inductively define 
ℛ(𝑄, 𝑛 + 1) = ℛ(ℛ(𝑄, 𝑛), 1)): 𝐺 ⊢od_ ∆6 s𝐴 ⊃ ∆6 s𝐵. Then ∆<ℛ(𝑄, 𝑛 + 1)= = 1 + ∆(ℛ(𝑄, 𝑛), 1) = 1 + 𝑛 +
∆(𝑄). 

The Lemma follows by induction. 

[End of Proof] 

Lemma II.7 For any natural number 𝑛 and proof 𝑄6:	𝐺 ⊢od_ ∆6𝐴 we can construct a 
proof 𝒮(𝑄6, 𝑛): 𝒢 ⊢od_ 𝐴 of ∆ − 𝑑𝑒𝑝𝑡ℎ = 𝑛 + ∆(𝑄6). 

Proof: Just apply n applications of ∆E. 

Theorem II.3 For any natural number 𝑛 there is a proof 𝑉6: ⊢od_ 𝐾(𝑛) with ∆(𝑉�) = 0 
and for 𝑛 > 0, ∆(𝑉6) = 𝑛 + 1. 

Claim 1: For any natural number 𝑛, there is a proof 𝑃6: ⊢od_ 𝑛 ≤ ℱ6(0) of ∆ − 𝑑𝑒𝑝𝑡ℎ =
0. 

Proof: From Axiom Group III, DEF0 ∀𝑚(𝑁(𝑓�(𝑚)) ∧ 𝑓�(𝑚) > 𝑚	 ∧ 	∀𝑛<𝑚 < 𝑛 ⊃ 𝑓�(𝑚) < 𝑓�(𝑛)=) 
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we can establish for any numerical term 𝑡 in 𝑇𝐸𝑅𝑀, ⊢od_ 𝑓�(𝑡) > ℱ�(𝑡). By 
convention, ℱ�(0) denotes 0. Let P� denote the proof of 0 ≤ ℱ�(0). 

Use the following proof schema to construct the proof 𝑃6 for 𝑛 ≥ 0. 
P�: ⊢od_ 0 ≤ ℱ�(0)                      ⊢od_ ∀𝑚∀𝑛(𝑓�(𝑛) > 𝑚 ⊃ 𝑓�(𝑛) ≥ 𝑚 + 1) 
   |    ⊢od_ ℱs(0) = 𝑓�<ℱ�(0)=          -------------------------------UI 
   |      |    ⊢od_ 𝑓�<ℱ�(0)= > ℱ�(0)   ⊢od_ 𝑓�<ℱ�(0)= > ℱ�(0) ⊃ 𝑓�<ℱ�(0)= ≥ ℱ�(0) + 1 
   |      |    -----------------------+----------------------------------MP 

   |      |                  ⊢od_ 𝑓�<ℱ�(0)= ≥ ℱ�(0) + 1 
   |    --o--------------+---------------(Substitution) 

   |               ℱs(0) ≥ ℱ�(0) + 1 
---o-----+-------------------(Arithmetic) 

𝑃s ⊢od_ 1 ≤ ℱs(0)                      ⊢od_ ∀𝑚∀𝑛(𝑓�(𝑛) > 𝑚 ⊃ 𝑓�(𝑛) ≥ 𝑚 + 1) 
    |   ⊢od_ ℱw(0) = 𝑓�(ℱs(0))          -------------------------------UI 
    |      |   ⊢od_ 𝑓�(ℱs(0)) > ℱs(0)   ⊢od_ 𝑓�(ℱs(0)) > ℱs(0) 	⊃ 𝑓�<ℱs(0)= ≥ ℱs(0) + 1 
    |      |   -----------------------+----------------------------------MP 

    |      |                 ⊢od_ 𝑓�<ℱs(0)= ≥ ℱs(0) + 1 
    |    --o-------------+-----------------------(Substitution) 

    |              ℱw(0) ≥ ℱs(0) + 1  
 ---o------------------------------(Arithmetic) 

    𝑃w ⊢od_ 2 ≤ ℱw(0)   
. . . . 

 ---o--------------- 

𝑃6 ⊢od_ 𝑛 ≤ ℱ6(0)                    ⊢od_ ∀𝑚∀𝑛(𝑓�(𝑛) > 𝑚 ⊃ 𝑓�(𝑛) ≥ 𝑚 + 1) 
    |   ⊢od_ ℱô s(0) = 𝑓�(ℱô(0))         -----------------------------------UI 
    |      |   ⊢od_ 𝑓�(ℱô(0)) > ℱô(0)   ⊢od_ 𝑓�(ℱô(0)) > ℱô(0) 	⊃ 𝑓�<ℱô(0)= ≥ ℱô(0) + 1 
    |      |   -----------------------+----------------------------------MP 

    |      |                 ⊢od_ 𝑓�<ℱô(0)= ≥ ℱô(0) + 1 
    |    --o-------------+-----------------------(Substitution) 

    |              ℱô s(0) ≥ ℱô(0) + 1  
 ---o------------------------------(Arithmetic) 

    𝑃ô s ⊢od_ n + 1 ≤ ℱô s(0) 

Claim 1 follows by induction on 𝑛. No instance of ∆I or ∆E were used so ∆(𝑃6) =
0. 

Claim 2: For any natural number 𝑛, there is a proof 𝑄6: ⊢od_ 𝐾(ℱ6(0)) with ∆(𝑄�) = 0 
and ∆(𝑄6) = 𝑛 + 1 for 𝑛 > 0. 

Proof: From Axiom K5 we can construct proofs 𝑈6: ⊢od_ 𝐾(ℱ6(0)) ⊃ ∆𝐾(ℱ6 s(0)) with 
∆(𝑈6) = 1 for 𝑛 ≥ 0, and from 𝑈6 and Theorem I.1(1) we can recursively construct 
the proofs 𝑄6 by means of the following schema: 

                  ⊢od_ ∀𝑛(𝐾(𝑛) ⊃ ∆𝐾(ℱ(𝑛))) 

                  --------------------UI 
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𝑄�: ⊢od_ 𝐾(0)        𝑈�: ⊢od_ 𝐾(0) ⊃ ∆𝐾(ℱ(0)) 
-----+--------------------------------MP 

⊢od_ ∆𝐾(ℱ(0))       ⊢od_ ∀𝑛(𝐾(𝑛) ⊃ ∆𝐾(ℱ(𝑛))) 
------------∆E    --------------------UI 

𝑄s: ⊢od_ 𝐾(ℱ(0))     	𝑈s: ⊢od_ 𝐾(ℱ(0)) ⊃ ∆𝐾(ℱw(0)) 
------+---------------------------------MP 

⊢od_ ∆𝐾(ℱw(0)) 
------------∆E 

𝑄w: ⊢od_ 𝐾(ℱw(0)) 

. . .             					⊢od_ ∀𝑛(𝐾(𝑛) ⊃ ∆𝐾(ℱ(𝑛))) 

------------∆E      --------------------UI 

𝑄6Äs: ⊢od_ 𝐾(ℱ6Äs(0))   𝑈6Äs: ⊢od_ 𝐾(ℱ6Äs(0)) ⊃ ∆𝐾(ℱ6(0)) 

-------+------------------------------------MP 

⊢od_ ∆𝐾(ℱ6(0)) 
--------------∆E 

𝑄6: ⊢od_ 𝐾(ℱ6(0)) 

𝑈6 is an instance of Axiom K5 and always has ∆ − 𝑑𝑒𝑝𝑡ℎ 1. We can see by 
inspection that  

∆(𝑄�) = 0,  

∆(𝑄s) = 2 

and for 𝑛 > 1, with the induction hypothesis that ∆(𝑄6Äs) = 𝑛, 

∆(𝑄6) = max{∆(𝑄6Äs), ∆(𝑈6Äs)} + 1 = max{∆(𝑄6Äs), 1} + 1 = ∆(𝑄6Äs) + 1 = 𝑛 + 1.  

Claim 2 follows by induction. 

Proof: (of Theorem II.3)  

From Theorem I.1(3), namely that ⊢od_ ∀𝑙∀𝑚(𝑙 < 𝑚 ⊃ <𝐾(𝑚) ⊃ 𝐾(𝑙)=), 

we can construct the following proof 𝑅6: ⊢od_ 𝑛 < ℱ6(0) ⊃ C𝐾<ℱ6(0)= ⊃ 𝐾<𝑛=D 

⊢od_ ∀𝑙∀𝑚(𝑙 < 𝑚 ⊃ <𝐾(𝑚) ⊃ 𝐾(𝑙)=) 
-----------------------------UI 

⊢od_ ∀𝑚(𝑛 < 𝑚 ⊃ C𝐾(𝑚) ⊃ 𝐾<𝑛=D) 

-----------------------------UI 

𝑅6: ⊢od_ 𝑛 < ℱ6(0) ⊃ C𝐾<ℱ6(0)= ⊃ 𝐾<𝑛=D 

The ∆ − 𝑑𝑒𝑝𝑡ℎ of 𝑅6 is 0. Using this and the proof 𝑃6 of Claim 1 and proof 𝑄6 of 
claim 2, we construct, for 𝑛 ≥ 0, a proof 𝑉6 as follows: 

𝑃6: ⊢od_ 𝑛 ≤ ℱ6(0)     𝑅6: ⊢od_ 𝑛 < ℱ6(0) ⊃ C𝐾<ℱ6(0)= ⊃ 𝐾<𝑛=D 
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---------+------------------------------------------MP 

⊢od_ 𝐾<ℱ6(0)= ⊃ 𝐾<𝑛=       𝑄6: ⊢od_ 𝐾(ℱ6(0)) 
-----+---------------------------------MP 

𝑉6: ⊢od_ 𝐾<𝑛= 

The ∆(𝑉6) = max	{0, ∆(𝑄6)} = ∆(𝑄6), since ∆(𝑃6) = ∆(𝑅6) = 0. Therefore ∆(𝑉�) = 0 and for 𝑛 >
0, ∆(𝑉6) = 𝑛 + 1. 

[End of proof of Theorem II.3.] 	

On the other hand, not ⊢od_ ∀𝑛𝐾(𝑛) since ⊢od_ ¬𝐾(𝑧) (Theorem I.1(7).) 

Theorem II.4 The ∆ − 𝑑𝑒𝑝𝑡ℎ of formal proofs in 𝑅𝐶𝐴 of 𝐾(𝑝) is unbounded as a 
function of p. 

Proof: Suppose there is a bound 𝑛� such that for all natural numbers 𝑝, there is 
a proof 𝑃 ⊢od_ 𝐾(𝑝) whose ∆ − 𝑑𝑒𝑝𝑡ℎ is less than 𝑛�. Fix 𝑖 = 𝑛�, 𝜁 = 𝓂(𝑖 + 𝑛�) + 1 and 
choose 𝑝 = 𝜁. By our assumption we can find a proof 𝑃� of 𝐾(𝜁) whose ∆ − 𝑑𝑒𝑝𝑡ℎ is 
less than 𝑛�. By the Soundness Theorem, (𝐸(⌈𝑃�⌉, 𝜁), 𝑖, 𝜁) RE 𝐾(𝜁).  By REL1, 
⊢od_�©ª 𝐾(𝑖, 𝜁) so (𝐸(⌈𝑃�⌉, 𝜁), 𝑖, 𝜁) RE 𝐾(𝑧). Let 𝑄 ⊢od_ ¬𝐾(𝑧) with ∆(𝑄) = 0 be the proof of 
¬𝐾(𝑧)  constructed in Theorem I.1(7). Applying the Soundness Theorem again we 
conclude (𝐸(⌈𝑄⌉, 𝜁), 𝑖, 𝜁) RE ¬𝐾(𝑧) and therefore (〈𝐸(⌈𝑃�⌉, 𝜁), 𝐸(⌈𝑄⌉, 𝜁)〉, 𝑖, 𝜁) RE 𝐾(𝑧) ∧ ¬𝐾(𝑧) 
which is not possible. [End of proof] 

Theorem II.5 If A is any sentence of 𝐿�Ó�  and 𝒢 is a finite set of sentences 
of 𝐿�Ó�. Then for any natural number p, 𝒢 ⊢od_ ∆(𝐴 iff 𝒢 ⊢od_ 𝐴. 

Proof: (⟹)apply ∆E p times. 

(⟸)apply ∆I p times. 

Note that both proofs have ∆ − 𝑑𝑒𝑝𝑡ℎ	 ≥ 	𝑝. 

[End of proof] 

The following definitions of dependent wffs and constant variables in a 

proof are adopted from [Kleene 1967, p.95]10 and [Hakli & Negri, 2010]11. 

Definition II.4 (Dependent wffs in a proof) Let 𝑃 be a proof of 𝐵 from a set 
𝒢 of wffs together with wff 𝐴, that is 𝑃: 𝒢 ∪ {𝐴} ⊢od_ 𝐵. 𝐵 is dependent on 𝐴 iff 
either 𝐵 is 𝐴 or 𝐵 follows by UG, ∆I or ∆E in 𝑃 from a wff which is dependent 
on 𝐴 or follows in 𝑃 by MP from two wffs of 𝑃 at least one of which is 
dependent on 𝐴.   

Note: If 𝑃: 𝒢 ∪ {𝐴} ⊢od_ 𝐵 and 𝐵 in 𝑃 is not dependent on 𝐴 then we can effectively 
find a proof 𝑄: 𝒢 ⊢od_ 𝐵	which is a sub-sequence of 𝑃. 
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Definition II.5 (Constant variables in a proof) Let 𝐴(𝑥) with free variable 𝑥 
be a wff occurring in proof 𝑃. x is constant in 𝑃 iff for any wff 𝐵 of 𝑃 
which is dependent on 𝐴(𝑥), 𝐵 does not follow in 𝑃 from an application of UG 
applied to a variable which is identified with any free occurrence of x in 

𝐴(𝑥).  

Definition II.6 (Deduction Theorem Conditions) Let	𝑃 be a proof from 𝒢 ∪ {𝐴} in 
RCA. Then 𝑃 and 𝐴 satisfy the Deduction Theorem Conditions (DT Conditions) 
iff for every wff 𝐵 in 𝑃 one of the following conditions holds. 

Condition 1: 𝐵 is 𝐴 or 𝐵 ∈ 𝐺 or 𝐵 ia an axiom in 𝑅𝐶𝐴. 

Condition 2: 𝐵 = ∀𝑥𝐶(𝑥) and follows in 𝑃 from 𝐶(𝑥) by an application of UG 
and that if 𝑥 is free in 𝐴, then 𝑥 is constant in 𝑃. 

Condition 3: 𝐵 follows in 𝑃 by MP from two previous wffs 𝐶 and 𝐶 ⊃ 𝐵 of 𝑃. 

Condition 4: 𝐵 = ∆𝐶 and follows in 𝑃 from 𝐶 by an application of ∆I and 
either 𝐶 is not dependent on 𝐴 or if 𝐶 is dependent on 𝐴 then one of 
condition 4.1-4.3 applies: 

Condition 4.1: we can effectively find a proof 𝑅: 𝒢 ⊢od_ 𝐶 ⊃ ∆𝐶. 

Condition 4.2: we can effectively find a proof 𝑅: 𝒢 ⊢od_ 𝐶. 

Condition 4.3. we can effectively find a proof 𝑅: 𝒢 ⊢od_ 𝐴 ⊃ ∆𝐴. 

Condition 5: 𝐵 = 𝐶 and follows in 𝑃 from ∆𝐶 by an application of ∆E and we 
can effectively find a proof 𝑅: 𝒢 ⊢od_ ∆𝐴 ⊃ 𝐴. 

Note: If 𝑃 and 𝐴 satisfies the DT conditions then so does every sub-proof of 𝑃. 

Theorem II.6 (Deduction Theorem for RCA). Let 𝒢 be a finite set of sentences in 
𝐿od_ and let 𝑃 be a proof of 𝐵 from 𝒢 ∪ {𝐴} in 𝑅𝐶𝐴.  If 𝐴 and 𝑃 satisfy the DT 
Conditions then we can effectively transform 𝑃 into a proof 𝒯(𝑃): 𝒢 ⊢od_ 𝐴 ⊃ 𝐵.  

Proof: The proof is by induction on the length of 𝑃. We proceed in parallel to 
the DT Conditions.  

If 𝑃 is length 1, i.e., 𝑃 =< 𝐵 >, then Condition 1 applies, namely 𝐵 is 𝐴 or 𝐵 ∈
𝐺 or 𝐵 ia an axiom in RCA. 

If 𝐵 is an axiom or 𝐵 ∈ 𝒢 then we have 

𝑃: 𝒢 ⊢od_ 𝐵       ⊢od_ 𝐵 ⊃ (𝐴 ⊃ 𝐵)    
-------+-------------------MP 

𝒯(𝑃): 𝒢 ⊢od_ 𝐴 ⊃ 𝐵        

If 𝐵 = 𝐴, then, since  ⊢od_ 𝐴 ⊃ 𝐴, we trivially have 𝒯(𝑃): 𝒢 ⊢od_ 𝐴 ⊃ 𝐴 where 𝒯(𝑃) =
{𝐴 ⊃ 𝐴}. 

Induction hypothesis: Assume that the Deduction theorem has been established 

for proofs of length n and that 𝑃 is a proof of length n+1. 
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Condition 1: this is handled just as in the case of proofs of length 1. 

Condition 2. 𝐵 = ∀𝑥𝐶(𝑥) and follows in 𝑃 from 𝐶(𝑥) by an application of UG. This 
occurrence of 𝑥 is not constant in 𝑃 because of the application of UG for this 
occurrence. Therefore, by the assumption of Condition 2, 𝑥 is not free in 𝐴. We 
can effectively find a sub-proof 𝑄 of 𝑃 of 𝐶(𝑥) from 𝒢 ∪ {𝐴}. That is  

𝑄: 𝒢 ∪ {𝐴} ⊢od_ 𝐶(𝑥) 

Since 𝑄 is shorter than 𝑃, we can apply the induction hypothesis and get 
𝒯(𝑄): 𝒢 ⊢od_ 𝐴 ⊃ 𝐶(𝑥). Then we have 

𝒯(𝑄): 𝒢 ⊢od_ 𝐴 ⊃ 𝐶(𝑥) 
---------------UG 

𝒢 ⊢od_ ∀𝑥(𝐴 ⊃ 𝐶(𝑥))     ⊢od_ ∀𝑥(𝐴 ⊃ 𝐶(𝑥)) ⊃ (𝐴 ⊃ ∀𝑥<𝐶(𝑥)=) 
--------+----------------------------------------MP 

𝒯(𝑃): 𝒢 ⊢od_ 𝐴 ⊃ ∀𝑥𝐶(𝑥)  

Condition 3. 𝐵 follows in 𝑃 by MP from two previous wffs 𝐶 and 𝐶 ⊃ 𝐵 of 𝑃, That 
is, we can effectively find two sub-proofs 𝑄s and 𝑄w of 𝑃 such that 

𝑄s: 𝒢s ∪ {𝐴} ⊢od_ 𝐶    𝑄w: 𝒢w ∪ {𝐴} ⊢od_ 𝐶 ⊃ 𝐵 
------+-----------------------------MP 

𝒢 ∪ {𝐴} ⊢od_ 𝐵 

where 𝒢 = 𝒢s ∪ 𝒢w. We can apply the induction hypothesis to 𝑄s and 𝑄w and get 
𝒯(𝑄s): 𝒢s ⊢od_ 𝐴 ⊃ 𝐶 and 𝒯(𝑄w): 𝒢w ⊢od_ 𝐴 ⊃ (𝐶 ⊃ 𝐵). Combine these as follows: 

𝒯(𝑄s): 𝒢s ⊢od_ 𝐴 ⊃ 𝐶    ⊢od_ (𝐴 ⊃ 𝐶) ⊃ (<𝐴 ⊃ (𝐶 ⊃ 𝐵)= ⊃ (𝐴 ⊃ 𝐵))     
----------+----------------------------------MP 

𝒢s ⊢od_ ((𝐴 ⊃ (𝐶 ⊃ 𝐵)) ⊃ (𝐴 ⊃ 𝐵)     𝒯(𝑄w): 𝒢w ⊢od_ 𝐴 ⊃ (𝐶 ⊃ 𝐵)  
-------+--------------------------------------MP 

𝒯(𝑃): 𝒢 ⊢od_ 𝐴 ⊃ 𝐵 

Condition 4. We now consider the case where 𝐵 = ∆𝐶 follows in 𝑃 by ∆I. We can 
effectively find a sub-proof 𝑄 of 𝑃 of 𝐶 from 𝒢⋃{𝐴}, that is 

𝑄: 𝒢⋃{𝐴} ⊢od_ 𝐶  

If 𝐶 is not dependent on 𝐴 then we can effectively find a sub-proof 𝑅 of 𝑃 of 𝐶 
from 𝒢 without the additional assumption 𝐴, that is, 𝑅: 𝒢 ⊢od_ 𝐶. 

𝑅: 𝒢 ⊢od_ 𝐶 
---------∆I       

𝒢 ⊢od_ ∆𝐶         ⊢od_ ∆𝐶 ⊃ (𝐴 ⊃ ∆𝐶) 
--------+------------------------MP 

𝒯(𝑃): 𝒢 ⊢od_ 𝐴 ⊃ ∆𝐶 

Assume that 𝐶 is dependent on 𝐴, There are three cases corresponding to 
conditions 4.1, 4.2, and 4.3. Since the sub-proof 𝑄 is shorter than 𝑃, we can 
apply the induction hypothesis and get 𝒯(𝑄): 𝒢 ⊢od_ 𝐴 ⊃ 𝐶. 
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Case 4.1. Assume we can effectively find a proof 𝑆: 𝒢 ⊢od_ 𝐶 ⊃ ∆𝐶. 
𝒯(𝑄): 𝒢 ⊢od_ 𝐴 ⊃ 𝐶     ⊢od_ 𝐴 ⊃ 𝐶 ⊃ ((𝐶 ⊃ ∆𝐶) ⊃ (	𝐴 ⊃ ∆𝐶)) 
-----------+----------------------------------MP 

𝒢 ⊢od_ (𝐶 ⊃ ∆𝐶) ⊃ (	𝐴 ⊃ ∆𝐶)    𝑆: 𝒢 ⊢od_ 𝐶 ⊃ ∆𝐶  
-------+------------------------------MP 

𝒯(𝑃): 𝒢 ⊢od_ (	𝐴 ⊃ ∆𝐶) 

Case 4.2. Assume we can effectively find a proof 𝑆: 𝒢 ⊢od_ 𝐶.  
𝑆: 𝒢 ⊢od_ 𝐶 
--------∆I 

𝒢 ⊢od_ ∆𝐶          ⊢od_ ∆𝐶 ⊃ (𝐴 ⊃ ∆𝐶) 
--------+------------------------MP 

𝒯(𝑃): 𝒢 ⊢od_ (	𝐴 ⊃ ∆𝐶) 

 

Case 4.3. Assume we can effectively find a proof 𝑆: 𝒢 ⊢od_ 𝐴 ⊃ ∆𝐴. Apply the 
induction hypothesis to proof 𝑄: 𝒢 ⊢od_ 𝐶. 

𝒯(𝑄): 𝒢 ⊢od_ 𝐴 ⊃ 𝐶 
----------∆I 

𝒢 ⊢od_ ∆(𝐴 ⊃ 𝐶)      ⊢od_ ∆(𝐴 ⊃ 𝐶) ⊃ (∆𝐴 ⊃ ∆𝐶) 
------+--------------------------------MP 

𝒢 ⊢od_ ∆𝐴 ⊃ ∆𝐶     ⊢od_ (𝐴∆⊃ ∆𝐶) ⊃ ((𝐴 ⊃ ∆𝐴) ⊃ (𝐴 ⊃ ∆𝐶)) 
------------------------------+---------------MP 

𝑆: 𝒢 ⊢od_ 𝐴 ⊃ ∆𝐴       𝒢 ⊢od_ (𝐴 ⊃ ∆𝐴) ⊃ (𝐴 ⊃ ∆𝐶)   
-------+------------------------------MP 

𝒯(𝑃): 𝒢 ⊢od_ 𝐴 ⊃ ∆𝐶   

Condition 5. 𝐵 = 𝐶 and follows in 𝑃 from ∆𝐶 by an application of ∆E and we can 
effectively find a proof 𝑆: 𝒢 ⊢od_ ∆𝐴 ⊃ 𝐴. Let 𝑄 be the (effectively determined) 
sub-proof of 𝑃 of ∆𝐶, that is 

𝑄: 𝒢⋃{𝐴} ⊢od_ ∆𝐶. 

By the induction hypothesis, we can convert the sub-proof 𝑄: 𝒢 ⊢od_ ∆𝐶 to a proof 
𝒯(𝑄): 𝒢 ⊢od_ 𝐴 ⊃ ∆𝐶. Construct a proof of 𝐴 ⊃ 𝐶 from 𝐺 as follows. 

𝑆: 𝒢 ⊢od_ ∆𝐴 ⊃ 𝐴    ⊢od_ (∆𝐴 ⊃ 𝐴) ⊃ ((𝐴 ⊃ ∆𝐶) ⊃ (∆𝐴 ⊃ ∆𝐶)) 
----------+--------------------------------------MP 

𝒢 ⊢od_ (𝐴 ⊃ ∆𝐶) ⊃ (∆𝐴 ⊃ ∆𝐶)     𝒯(𝑄): 𝒢 ⊢od_ 𝐴 ⊃ ∆𝐶 
-----+-------------------------------------MP 

𝒢 ⊢od_ ∆𝐴 ⊃ ∆𝐶     ⊢od_ (∆𝐴 ⊃ ∆𝐶) ⊃ ∆(𝐴 ⊃ 𝐶) 
-------+-----------------------------MP 

𝒢 ⊢od_ ∆(𝐴 ⊃ 𝐶) 
-------------∆E 

𝒯(𝑃): 𝒢 ⊢od_ 𝐴 ⊃ 𝐶 
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Note: In Cases 4 and 5 the proof 𝑆 might not be a sub-proof of 𝑃 and might be 
longer than 𝑃 nor is it assumed that the DT Conditions hold for 𝑅 and 𝐴. Since 
the transformation 𝒯 is not applied to proof 𝑅, this does not matter. 

[End of proof of the Deduction Theorem] 

Theorem II.7 (Proof by Contradiction for RCA). Let 𝒢 be a set of sentences in 
𝐿od_ and let P be a proof of 𝐵 ∧ ¬𝐵 from 𝒢 ∪ {𝐴} in RCA such that 𝑃 and 𝐴 satisfy 
the Deduction Theorem Conditions. Then 𝒢 ⊢od_ ¬𝐴.  

Proof: This is a direct corollary of Theorem II.6. 

PART III Rational Constructive Analysis 

The formal system 𝑅𝐶𝐴 shall provide the formal framework for the development 
of Rational Constructive Analysis. However, it is convenient to proceed in the 

usual informal style of mathematical arguments, supported by the possibility, 

should the need arise, of providing a complete formalization within 𝑅𝐶𝐴. 

It is not possible in a few pages to present an extensive development of 

Rational Constructive Analysis. Instead I shall provide an excursion through 

the beginning parts of the theory. 

The intuitive picture is this. I shall use rational numbers exclusively to do 

analysis. Two rationals are identified (we write 𝑥	𝐸𝑄	𝑦) iff their difference 
is 'infinitesimal'. Two rationals are distinguished (we write 𝑥	𝑁𝐸	𝑦) if their 
difference is greater than 1/𝑘 where 𝑘 is an ‘arrived’ natural number. With 
respect to this notion of equality, the functionality of a rule 𝑥 → 𝑓(𝑥) 
defined on rationals (i.e., 𝑥	𝐸𝑄	𝑦 ⊃ ∆(𝑓(𝑥)	𝐸𝑄	𝑓(𝑦)) implies the continuity of the 
function defined by the rule. That is, as points get very close, the function 

values will do likewise. It is also required that, conversely, 𝑓(𝑥)	𝑁𝐸	𝑓(𝑦) ⊃
∆(𝑥	𝑁𝐸	𝑦) i.e. there are no ‘jumps’. Thus the setting for analysis is 
configured. Interestingly, by allowing arbitrary rationals (i.e. no bound on 

the complexity of numerator and denominator) one gets something closer to the 

intuitionistic continuum of free choice sequences rather than the constructive 

continuum of recursive Reals. 

Definition III.1 Standard, large, and infinitesimal number predicates:𝑆, 𝐿, 𝐼. 

x ∈ K: 𝐾(𝑥). "x is a present or standard positive integer." 

x ∈ L: (∃𝑛)(𝐾(𝑛) 	∧ 	ℱ(𝑛, 𝐼𝑁𝑇(|𝑥|)) 	≥ 	𝑧). "x is large." 

𝑥	 ∈ 	𝑆: (∃𝑛)	(𝐾(𝑛) 	∧ 	 |𝑥| 	≤ 	𝑛). "x is standard." 

x ∈ I: 𝑥 = 0	 ∨ 	1/𝑥	 ∈ 𝐿. "x is infinitesimal." 

𝑥	𝐸𝑄	𝑦: 𝑥 − 𝑦	 ∈ 𝐼. "x equals y." 

𝑥	𝑁𝐸	𝑦: (∃𝑛)(𝐾(𝑛) ∧ 	 (|𝑥 − 𝑦| > 1/𝑛).. “x is not equal to y.” 

𝑥	𝐿𝑇	𝑦: (∃𝑛)(𝐾(𝑛) 	∧ 	𝑥 + 1/𝑛 ≤ 𝑦). "x is strictly less than y." 
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𝑥	𝐿𝐸	𝑦: (∃𝑒)	(𝑒	 ∈ 𝐼	 ∧ 𝑥 ≤ 𝑦	 + 	𝑒). "x is less than or equal to y." 

𝑥	𝐺𝑇	𝑦: (∃𝑛)(𝐾(𝑛) 	∧ 	𝑦 + 1/𝑛 ≤ 𝑥)  “x is strictly greater than y.” 

𝑥	𝐺𝑇	0: (∃𝑛)(𝐾(𝑛) 	∧ 	1/𝑛 ≤ 𝑥) “x is strictly positive.” 

𝑥	𝐺𝐸	𝑦: (∃𝑒)	(𝑒	 ∈ 𝐼	 ∧ 𝑥 ≥ 𝑦 + 	𝑒). “x is greater than or equal to y.” 

Lemma III.1 z is large. 

Proof: 0 ∈ K and ℱ(0, 𝐼𝑁𝑇(|𝑧|)) = ℱ(0, 𝑧) = 𝑧 and 𝑧 ≥ 𝑧. 

[End of proof] 

Lemma III.2 If n is standard then ℱ(𝑛, 𝑛) < 𝑧. 

Proof: This can be derived from Axiom K7 of Group VII: 𝐾<ℓ= ⊃ ∀𝑛(	𝐾(𝑛) ⊃
∆ℓ	∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, 𝑛) < z)). With ℓ = 0, and ⊢od_ 𝐾(0), we get ⊢od_ ∀𝑛(	𝐾(𝑛) ⊃
∀𝑚(𝐾(𝑚) ⊃ ℱ	(𝑚, 𝑛) < z)) from which we can derive  

⊢od_ ∀𝑛(	𝐾(𝑛) ⊃ ℱ	(𝑛, 𝑛) < z). 

[End of proof] 

Corollary III.1 If 𝑛 is standard then ℱ(𝑛, 𝑛) is not large, that is,	¬ℱ(𝑛, 𝑛) ∈ 𝐿.  

Proof: From Lemma III.2 we have  

(1) ⊢od_ ∀𝑛(	𝐾(𝑛) ⊃ ℱ	(𝑛, 𝑛) < z). 

Let 𝐴 be the sentence ∃𝑛(𝐾(𝑛) ∧ ℱ(𝑛, 𝑛) 	 ∈ 	𝐿) that is,  
𝐴 = ∃𝑛(𝐾(𝑛) ∧ ∃𝑘(𝐾(𝑘) ∧ ℱ<𝑘, ℱ(𝑛, 𝑛)= ≥ z)).  

We shall show that ⊢od_ ¬𝐴. 

We can show by induction on 𝑘 that ⊢od_ ∀𝑘∀𝑛(ℱ<𝑘, ℱ(𝑛, 𝑛)= = ℱ(𝑛 + 𝑘, 𝑛)). Combining 
this with 𝐴 we get 

(3) ⊢od_ 𝐴 ⊃ ∃𝑛𝑘(𝐾(𝑛) ∧ 𝐾(𝑘) ∧ ℱ(𝑘 + 𝑛, 𝑛) ≥ 𝑧). 

Also we can show that 

(4) ⊢od_ ∀𝑛𝑘(ℱ(𝑘 + 𝑛, 𝑛) ≤ ℱ(𝑘 + 𝑛, 𝑘 + 𝑛)), 

so 

(5)	⊢od_ 𝐴 ⊃ ∃𝑛𝑘(𝐾(𝑛) ∧ 𝐾(𝑘) ∧ ℱ(𝑘 + 𝑛, 𝑘 + 𝑛) ≥ 𝑧). 

Now ⊢od_ ∀𝑛𝑘(𝐾(𝑛) ∧ 𝐾(𝑘) ⊃ ∆𝐾(𝑘 + 𝑛)) so we can show from (5) that   

(6)	⊢od_ 𝐴 ⊃ ∃𝑛(∆𝐾(𝑛) ∧ ℱ(𝑛, 𝑛) ≥ 𝑧). 

By Axiom PAT, ⊢od_ ∀𝑛(ℱ(𝑛, 𝑛) ≥ 𝑧 ⊃ ∆(ℱ(𝑛, 𝑛) ≥ 𝑧)). Combining this with (6) we get 

⊢od_ 𝐴 ⊃ ∃𝑛(∆(𝐾(𝑛) ∧ ∆(ℱ(𝑛, 𝑛) ≥ 𝑧)) and pulling out the ∆ we get 

(7) ⊢od_ 𝐴 ⊃ ∆∃𝑛(𝐾(𝑛) ∧ 𝑧 ≤ ℱ(𝑛, 𝑛)). 

From (1) we get, applying ∆I, 

(8) ⊢od_ ∆∀n(	𝐾(n) ⊃ ℱ	(𝑛, n) < z). 

From (7) and (8) we can derive 

(9) ⊢od_ 𝐴 ⊃ ∆(𝑧 < 𝑧). 
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However, ⊢od_ ¬𝑧 < 𝑧 and hence ⊢od_ ∆(¬𝑧 < 𝑧) by ∆I and then ⊢od_ ¬∆(𝑧 < 𝑧) follows by 
the Tense Logic axiom schemata ∆4. Using ⊢od_ ¬∆(𝑧 < 𝑧) and the tautology  

⊢od_ (<𝐴 ⊃ ∆(𝑧 < 𝑧)= ∧ ¬∆(𝑧 < 𝑧)) ⊃ <𝐴 ⊃ ∆(𝑧 < 𝑧) ∧ ¬∆(𝑧 < 𝑧)=, 

(9) becomes 

(10) ⊢od_ 𝐴 ⊃ (∆(𝑧 < 𝑧) ∧ ¬∆(𝑧 < 𝑧) so ⊢od_ ¬𝐴. 

[End of proof] 

Corollary III.2 𝑥 ∈ 𝑆 implies ¬𝑥 ∈ 𝐿 and 𝑥 ∈ 𝐿 implies ¬𝑥 ∈ 𝑆, that is, the sets 
of standard numbers and of large numbers are provably disjoint. 

Proof: Suppose that 𝑥 ∈ 𝐿. Then for some 𝑛 ∈ 𝐾, ℱ<𝑛, 𝐼𝑁𝑇(|𝑥|)= ≥ 𝑧. Suppose 𝑥 ∈ 𝑆. Let 
𝑚 = max	{𝑛, 𝐼𝑁𝑇(|𝑥|)}. Since both 𝑛 and 𝐼𝑁𝑇(|𝑥|) are in 𝐾, 𝑚 is in 𝐾. By Lemma III.2,  
ℱ<𝑚,𝑚= < 𝑧. Since ℱ is increasing in both variables, 𝑧 ≤ ℱ<𝑛, 𝐼𝑁𝑇(|𝑥|)= ≤ ℱ<𝑚,𝑚= < 𝑧, 
a contradiction. Therefore 𝑥 ∈ 𝐿 implies ¬𝑥 ∈ 𝑆. 

Now suppose 𝑥 ∈ 𝑆. If 𝑥 ∈ 𝐿 then for some 𝑛 ∈ 𝐾, ℱ<𝑛, 𝐼𝑁𝑇(|𝑥|)= ≥ 𝑧. Let 𝑚 =
max	{𝑛, 𝐼𝑁𝑇(|𝑥|)}. Arguing as before, 𝑚 is in 𝐾, so again we get 𝑧 ≤ ℱ<𝑛, 𝐼𝑁𝑇(|𝑥|)= ≤
ℱ<𝑚,𝑚= < 𝑧, a contradiction and therefore ¬𝑥 ∈ 𝐿. 

[End of proof] 

We can prove the following stronger result. 

Corollary III.3 𝐾(𝑛) ⊃ ∆6(𝐾 ∩ 𝐿 = 𝜙). 

Proof: The argument goes as follows. 

Assume 𝐾(𝑙) and let 𝓃(𝑥) = 𝐼𝑁𝑇(|𝑥|). Using the definitions of 𝑆 and 𝐿, Axiom Group 
VII, ∆I and ∆-distribution, establish the following: 

(1) ∆Á(𝑥 ∈ 𝐿) ⊃ ∆Á∃𝑛(𝐾(𝑛) ⊃ ℱ<𝑛,𝓃(𝑥)= ≥ 𝑧) (from definition of 𝐿, ∆I and ∆-
distribution) 

(2) ∆Á(𝑥 ∈ 𝑆) ⊃ ∆wÁ∀𝑛(𝐾(𝑛) ⊃ ℱ<𝑛,𝓃(𝑥)= < 𝑧) (from definition of 𝑆 and ∆I and ∆-
distribution) 

(3) ∆wÁ∀𝑛(𝐾(𝑛) ⊃ ℱ<𝑛,𝓃(𝑥)= < 𝑧) ⊃ ∆Á∀𝑛(𝐾(𝑛) ⊃ ℱ<𝑛,𝓃(𝑥)= < 𝑧) (ℱ is increasing and 𝐾 
grows over time) 

(4) ∆Á(𝑥 ∈ 𝑆) ⊃ ∆Á∀𝑛(𝐾(𝑛) ⊃ ℱ<𝑛,𝓃(𝑥)= < 𝑧) ((2) and (3)) 

(5) ∆Á(𝑥 ∈ 𝐿) ∧ ∆Á(𝑥 ∈ 𝑆) ⊃ 	∆Á(𝑧 < 𝑧) ((1) and (4) and transitivity of <) 

(6) ∆Á(𝑥 ∈ 𝐿) ⊃ (∆Á(𝑥 ∈ 𝑆) ⊃ ∆Á(𝑧 < 𝑧)) and ∆Á(𝑥 ∈ 𝑆) ⊃ (∆Á(𝑥 ∈ 𝐿) ⊃ ∆Á(𝑧 < 𝑧))  

((5) and Tautologies (𝐴 ∧ 𝐵 ⊃ 𝐶) ⊃ (𝐴 ⊃ (𝐵 ⊃ 𝐶)) and (𝐴 ∧ 𝐵 ⊃ 𝐶) ⊃ (𝐵 ⊃ (𝐴 ⊃ 𝐶)) 

(7) ∆Á(¬𝑧 < 𝑧) (Axiom L11 and ∆I) 

(8) ∆Á(𝑥 ∈ 𝐿 ⊃ (𝑥 ∈ 𝑆 ⊃ (𝑧 < 𝑧 ∧ ¬𝑧 < 𝑧))) and ∆Á(𝑥 ∈ 𝑆 ⊃ (𝑥 ∈ 𝐿 ⊃ (𝑧 < 𝑧 ∧ ¬𝑧 < 𝑧))) 

((6) and (7) and ∆-distribution and the tautology 𝐴 ∧ (𝐵 ⊃ (𝐶 ⊃ 𝐷)) ⊃ (𝐵 ⊃
(𝐶 ⊃ 𝐷 ∧ 𝐴)) 

(9) ∆Á(𝑥 ∈ 𝐿 ⊃ ¬𝑥 ∈ 𝑆) and ∆Á(𝑥 ∈ 𝑆 ⊃ ¬𝑥 ∈ 𝐿) (Axioms for negation) 

[End of sketch of proof] 
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As time proceeds, larger elements of 𝐾 arrive, smaller elements of 𝐿 arrive, 
and never the twain shall meet, if you're careful. What “careful” means here 

is that the choice of the interpretation for 𝑧 and for ℱ depend on the number 
of stages in the growth of 𝐾 (temporal steps 𝑛 represented by ∆6) required by 
the various (finite number of) mathematical results of interest. 

The following picture illustrates how the infinitesimals, the standard 

rationals and the large rationals grow through time: 

Infinitesimals      Positive Standard     Positive Large 

← −−−− 0 −−−−→									← −−−−−−−−−→									← −−−−−−−−− 

Lemma III.3 None of the predicates, K, L, S, I, or the relations EQ, LT, LE, 
GT, GE, or NE are decidable.  

Proof: For example, to show the undecidability of L argue as follows. Assuming 
the decidability of L, use BMEP and ¬𝐿(0) to find an 𝑚	 < 	𝑧 such that ¬𝐿(𝑚) and 
𝐿(𝑚 + 1). But 𝐿(𝑚 + 1) implies ∆𝐿(𝑚), by K5, while ¬𝐿(𝑚) implies ∆(¬𝐿(𝑚)) and so, 
one obtains ∆(𝐿(𝑚)	∧ ¬	𝐿	(𝑚)	) from which we can deduce ¬0 = 0, a contradiction. 

[End of proof] 

Lemma III.4 𝐾, 𝐿, 𝐼, 𝐿𝐸, 𝐺𝐸, 𝐿𝑇, 𝐺𝑇, 𝐸𝑄 are preserved under ∆.  

That is, 

(a) 𝑛 ∈ 	𝐾 ⊃ ∆(𝑛 ∈ 	𝐾). 

(b) 𝑥 ∈ 	𝐿 ⊃ ∆(𝑥 ∈ 	𝐿). 

(c) 𝑥 ∈ 	𝐼 ⊃ ∆(𝑥 ∈ 	𝐼). 

(d) 𝑥	𝐿𝐸	𝑦	 ⊃ ∆(𝑥		𝐿𝐸	𝑦). 

(e) 𝑥	𝐺𝐸	𝑦	 ⊃ ∆(𝑥		𝐺𝐸	𝑦). 

(f) 𝑥	𝐿𝑇	𝑦	 ⊃ ∆(𝑥		𝐿𝑇	𝑦). 

(g) 𝑥	𝐺𝑇	𝑦	 ⊃ ∆(𝑥		𝐺𝑇	𝑦). 

(h) 𝑥	𝐸𝑄	𝑦	 ⊃ ∆(𝑥		𝐸𝑄	𝑦). 

(i) 𝑥	𝐸𝑄	𝑦 ∧ 𝑦	𝐿𝐸	𝑧 ⊃ ∆(𝑥	𝐿𝐸	𝑧). 

(j) 𝑥	𝐿𝐸	𝑦 ∧ 𝑦	𝐿𝑇	𝑧 ⊃ (𝑥 < 𝑧) ∧ ∆(𝑥	𝐿𝑇	𝑧). 

(k) ∀𝑛(𝑛 ∈ 𝐾 ⊃ ¬∆(𝑛 ∈ 𝐿)). 

NOTE. Because of the Soundness Theorem, arguments iterating these results put 

constraints on the needed magnitude of 𝑧 and the number of steps in the 
generation of 𝐾.  

Proof: Let 𝓃(𝑥) denote 𝐼𝑁𝑇(𝐴𝐵𝑆(𝑥)). 

Case (a). 𝐾 is increasing over time. In particular, from Axion K5, 𝑛 ∈ 𝐾 ⊃
∆(ℱ(𝑛) ∈ 𝐾)	and ℱ(𝑛) > 𝑛. Since 𝐾 is closed under predecessor it follows that 𝑛 ∈
	𝐾 ⊃ ∆(𝑛 ∈ 	𝐾). 
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Case (b). 𝑥 ∈ 	𝐿 impies that there is a 𝑘 ∈ 𝐾 such that ℱ(𝑘,𝓃(𝑥)) ≥ 𝑧. From PAT 
∆(ℱ(𝑘,𝓃(𝑥)) ≥ 𝑧) and from (a), ∆(𝑘 ∈ 𝐾). Therefore ∆(𝑘 ∈ 𝐾 ∧ ℱ(𝑘,𝓃(𝑥)) ≥ 𝑧) and so 𝑥 ∈
	𝐿 ⊃ ∆(𝑥 ∈ 	𝐿). 

Case (c). 𝑥 ∈ 	𝐼 implies that 𝑥 = 0 or there is an 1/𝑥 ∈ 𝐿. From (b),1/𝑥 ∈ 𝐿 ⊃ 	∆(1 𝑥⁄ ∈
𝐿), so 𝑥 ∈ 	𝐼 ⊃ ∆(𝑥 ∈ 	𝐼). 

Case (d). 𝑥	𝐿𝐸	𝑦 implies there is an 𝑒 ∈ 𝐼 such that 𝑥 ≤ 𝑦 + 𝑒. From (c) it follows 
that 𝑒 ∈ 	𝐼 ⊃ ∆(𝑒 ∈ 	𝐼). Since 𝑥 ≤ 𝑦 + 𝑒 ⊃ ∆(𝑥 ≤ 𝑦 + 𝑒) it follows that 𝑥	𝐿𝐸	𝑦	 ⊃ ∆(𝑥		𝐿𝐸	𝑦). 

Case (e). The proof is similar to that of (d). 

Case (f). 𝑥	𝐿𝑇	𝑦 implies that there is 𝑛 ∈ 𝐾 such that 𝑥 ≤ 𝑦 − 1/𝑛. By Case (a), 𝑛 ∈
𝐾 ⊃ ∆(𝑛 ∈ 𝐾). 𝑥 ≤ 𝑦 − 1/𝑛 ⊃ ∆(	𝑥 ≤ 𝑦 − 1/𝑛), so 𝑥	𝐿𝑇	𝑦	 ⊃ ∆(𝑥		𝐿𝑇	𝑦). 

Case (g). Similar to Case (f). 

Case (h). 𝑥	𝐸𝑄	𝑦 implies that |𝑥 − 𝑦| ∈ 𝐼. From (c) it follows that  

|𝑥 − 𝑦| ∈ 𝐼 ⊃ ∆(|𝑥 − 𝑦| ∈ 𝐼)  

and hence, 𝑥	𝐸𝑄	𝑦	 ⊃ ∆(𝑥		𝐸𝑄	𝑦). 

Case (i) 𝑥	𝐸𝑄	𝑦 ∧ 𝑦	𝐿𝐸	𝑧 imply that there are 𝑒, 𝑓 ∈ 𝐼 such that 𝑥 ≤ 𝑦 + 𝑒 and 𝑦 ≤ 𝑧 + 𝑓 
so 𝑥 ≤ 𝑧 + 𝑒 + 𝑓. Now 𝑒, 𝑓 ∈ 𝐼 ⊃ ∆(𝑒 + 𝑓 ∈ 𝐼), so ∆(𝑥	𝐿𝐸	𝑧). 

Case (j). 𝑤	𝐿𝐸	𝑥 ∧ 𝑥	𝐿𝑇	𝑦 implies that there is an 𝜀 ∈ 𝐼 and 𝑛 ∈ 𝐾 such that 𝑤 ≤ 𝑥 + 𝜀 
and 𝑥 + 1 𝑛⁄ < 𝑦, so 𝑤 + 1 𝑛⁄ ≤ 𝑥 + 1 𝑛⁄ + 𝜀 < 𝑦 + 𝜀. Therefore 𝑤 < 𝑦 + (𝜀 − 1 𝑛⁄ ) and since 𝜀 
is infinitesimal, 𝜀 < 1/𝑛, it follows that 𝑤	𝐿𝐸	𝑥 ∧ 𝑥	𝐿𝑇	𝑦 ⊃ 𝑤 < 𝑦. Moreover, 𝑛 ∈ 𝐾 
implies that ∆(2𝑛 ∈ 𝐾), so it follows that ∆(𝜀 < 1/(2𝑛)). 𝑤 + 1 (2𝑛)⁄ < 𝑦 + 𝜀 − 1 2𝑛⁄  and 

hence, ∆(2𝑛 ∈ 𝐾 ∧ (𝑤 + 1 (2𝑛)⁄ < 𝑦)). Therefore ∆(𝑤	𝐿𝑇	𝑦). 

Case (k). To prove: ∀𝑛(𝐾(𝑛) ⊃ ¬∆(𝑛 ∈ 𝐿)). 

This follows from the stronger result of Corollary III.3: 𝐾(𝑛) ⊃ ∆6(𝐾 ∩ 𝐿 = 𝜙) and 
the fact that 𝐾(1) and ∀𝑛<𝐾(𝑛) ⊃ ∆𝐾(𝑛)= are theorems of 𝑅𝐶𝐴. 

[8tarse                  End of Proof of Lemma III.4.] 

The standard 𝑥	 ∈ 𝑆 shall form the 'continuum' under the identification 
relation 𝐸𝑄. 𝐸𝑄 is an ∆-equivalence relation, that is, if 𝑥	𝐸𝑄	𝑦	and 𝑦	𝐸𝑄	𝑧 then 
∆(𝑥	𝐸𝑄	𝑧). This and other usual algebraic facts follow from Theorem III.1. 

Theorem III.1 Closure properties for 𝑅𝐶𝐴. 

(a) 𝑥, 𝑦	 ∈ 𝑆 implies ∆(𝑥 + 𝑦 ∈ 𝑆 ∧ 	𝑥 ∗ 𝑦	 ∈ 𝑆). 

(b) (𝑥	 ∈ 𝑆) 	∧ (𝑥	𝑁𝐸	0) implies (1/𝑥	 ∈ 𝑆) ∧ (1 𝑥⁄ 𝑁𝐸	0). 

(c) 𝑥, 𝑦	 ∈ 𝐼 implies (𝑥 ∗ 𝑦	 ∈ 𝐼) 	∧ ∆(𝑥 + 𝑦	 ∈ 𝐼). 

(d) (𝑥	 ∈ 𝐿) 	∧ 	 (0	𝑁𝐸	𝑦) ∧ (𝑦	 ∈ 𝑆) implies ∆(𝑥/𝑦	 ∈ 𝐿). 
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(e) (𝑥	 ∈ 𝐼) 	∧ (𝑦	 ∈ 𝐾) implies ∆(𝑥 ∗ 𝑦	 ∈ 	𝐼). 

(f) 𝑥 ∗ 𝑦	 ∈ 𝐿	implies ∆(𝑥	 ∈ 𝐿	 ∨ 𝑦	 ∈ 𝐿). 

(g) 𝑥 ∗ 𝑦	 ∈ 𝐼 implies ∆(𝑥	 ∈ 𝐼	 ∨ 𝑦	 ∈ 𝐼). 

(h) (𝑛, 𝑚, 𝑘, 𝑙	 ∈ 𝐾	 ∧ 𝑛 𝑚⁄ 	𝐸𝑄	 𝑘 𝑙⁄ ) implies 𝑛 𝑚⁄ = 	𝑘 𝑙⁄ . 

Proof: To prove these closure properties one must require that ℱ(𝑛) grow in 
excess of various rates.  

Case(a). Let 𝑤	 = 	𝑚𝑎𝑥{|𝑥|, |𝑦|}. Since 𝑤 ∈ 𝑆, |𝑤| < 𝑛 for some 𝑛 ∈ 𝐾. By Axiom K5, 
∆(ℱ(𝑛) ∈ 𝑆), so, if ℱ(𝑛) > max	{2𝑛, 𝑛w} then |𝑥 + 𝑦| 	≤ ℱ(𝑛) and |𝑥 ∗ 𝑦| 	≤ ℱ(𝑛) so ∆(𝑥 ∗ 𝑦 ∈ 𝑆). 

Case (b). (𝑥	 ∈ 𝑆) 		∧ (𝑥	𝑁𝐸	0) implies that there is an 𝑛 ∈ 𝐾 such that 1 𝑛⁄ < |𝑥| < 𝑛. 
Tacking recipricals we get 𝑛 > |1/𝑥| > 1/𝑛 so (1/𝑥	 ∈ 𝑆) ∧ (1 𝑥⁄ 𝑁𝐸	0). 

Case (c). Let	𝑥, 𝑦	 ∈ 𝐼. Therfore 1 𝑥⁄ , 1/𝑦	 ∈ 𝐿 so is an 𝑛 ∈ 𝐾 such that ℱ(𝑛, |1/𝑥|) > 𝑧 
and ℱ(𝑛, |1/𝑦|) > 𝑧. Since |1 𝑥⁄ 𝑦| is greater than either 1 𝑥⁄  or 1/𝑦 it follows that 
ℱ(𝑛, |1/𝑥𝑦|) > 𝑧 and hence 𝑥𝑦 ∈ 𝐼. If 𝑥 + 𝑦 = 0 we are done. Without loss of 
generality, assume that 0 < |𝑥| < |𝑦|. Then |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| so 1 |𝑥 + 𝑦|⁄ ≥ 1 (|𝑥| + |𝑦|)⁄ ≥
1/|2𝑦|. Since 𝑦 ∈ 𝐼, there is an 𝑛 ∈ 𝐾 such thatℱ(𝑛, |1/𝑦|) > 𝑧. If ℱ(𝑛) ≥ 2𝑛 then  

ℱ(𝑛 + 1, 1 |𝑥 + 𝑦|⁄ ) = ℱ(𝑛, ℱ(1 |𝑥 + 𝑦|⁄ )) ≥ ℱ(𝑛, ℱ(1 |2𝑦|⁄ )) ≥ ℱ(𝑛, 1/|𝑦|) > 𝑧 

so ℱ(𝑛 + 1, 1 |𝑥 + 𝑦|⁄ ) > 1/z. Since 𝑛 ∈ 𝐾 ⊃ ∆(𝑛 + 1 ∈ 𝐾) it follows that ∆(∃𝑚(𝑚 ∈ 𝐾 ∧
ℱ(𝑚, 1 |𝑥 + 𝑦|⁄ ) > 1/z) and therefore ∆(1 |𝑥 + 𝑦|⁄ ∈ 𝐿), that is, ∆(𝑥 + 𝑦 ∈ 𝐼). 

Case (d). Let (𝑥	 ∈ 𝐿) 	∧ 	 (0	𝑁𝐸	𝑦) ∧ (𝑦	 ∈ 𝑆). Then there exists 𝑛s, 𝑛w, 𝑛1 ∈ 𝐾 such that 
ℱ(𝑛s, |𝑥|) > 𝑧 and 1 𝑛w⁄ < |𝑦| < 𝑛1. Let 𝑛 = max	{𝑛s, 𝑛w, 𝑛1}. Therefore 𝑛 ∈ 𝐾 and ℱ(𝑛, |𝑥|) > 𝑧 
and 𝑛 > 1/|𝑦| > 1/𝑛. Assume ℱ(𝑛) > 2𝑛. 𝑛 ∈ 𝐾 ⊃ ∆(𝑛 + 𝑛 ∈ 𝐾	) and p0 

ℱ(𝑛 + 𝑛, |𝑥/𝑦|) = ℱ(𝑛, ℱ(𝑛, |𝑥 𝑦⁄ |)) > ℱ(𝑛, 26|𝑥 𝑦⁄ |)) > ℱ(𝑛, 26|𝑥|/𝑛) > ℱ(𝑛, |𝑥|) > 𝑧. 

So ∆(∃m(m ∈ K ∧ (ℱ(𝑚, |𝑥/𝑦|) > 𝑧)). 

Case (e). Let (𝑥	 ∈ 𝐼) 	∧ (𝑦	 ∈ 𝐾). We must show that ∆(𝑥 ∗ 𝑦	 ∈ 	𝐼). We can assume that 
|𝑦| > 0	since otherwise 𝑥𝑦 = 0 ∈ 𝐼. From the assumptions, there are 𝑛s, 𝑛w ∈ 𝐼 such 
that ℱ(𝑛s, 1/|𝑥|) > 𝑧 and |𝑦| < 𝑛w. Let 𝑛 = max	{𝑛s, 𝑛w}. Therefore 𝑛 ∈ 𝐾 and ℱ(𝑛, 1/|𝑥|) > 𝑧 
and 0 < |𝑦| < 𝑛. Assume ℱ(𝑛) > 2𝑛. Then 26 > 𝑛 > |𝑦| and hence  

ℱ(𝑛 + 𝑛, 1/|𝑥𝑦|) = ℱ(𝑛, ℱ(𝑛, 1/|𝑥𝑦|)) > ℱ(𝑛, 26/|𝑥𝑦|)) > ℱ(𝑛, 1/|𝑥|) > 𝑧. 

Now 𝑛 ∈ 𝐾 ⊃ ∆(𝑛 + 𝑛 ∈ 𝐾) so ∆(∃m(m ∈ K ∧ (ℱ(𝑚, 1/|𝑥𝑦|) > 𝑧)) and we are done. 

Case(f). Suppose that 𝑥 ∗ 𝑦	 ∈ 𝐿	 and that 𝑀 = 	𝑚𝑎𝑥	{|𝑥|, |𝑦|}. Then 𝑀w ≥ |𝑥 ∗ 𝑦|	. 𝑥 ∗ 𝑦	 ∈ 𝐿 
implies that ℱ(𝑘, |𝑥 ∗ 𝑦|) > 𝑧 for some 𝑘	 ∈ 𝐾 and therefore ℱ(𝑘,𝑀w) > 	𝑧. Assuming that 
∀𝑛(ℱ(𝑛) ≥ 	 𝑛w), it follows that ℱ(𝑘 + 1,𝑀) 	> 	𝑧. Therefore ∆	(𝑀	 ∈ 𝐿) and hence ∆(𝑥	 ∈
𝐿	 ∨ 𝑦	 ∈ 𝐿). 

Case (g). Follows directly from Case (f). 𝑥 ∗ 𝑦 ∈ 𝐼 iff 1/(𝑥 ∗ 𝑦) ∈ 𝐿 which, by (f) 
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implies that 1/𝑥 ∈ 𝐿 ∨ 1/𝑦 ∈ 𝐿 which imlies that 𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼. 

Case (h). To prove: (𝑛, 𝑚, 𝑘, 𝑙	 ∈ 𝐾	 ∧ 𝑛 𝑚⁄ 	𝐸𝑄	 𝑘 𝑙⁄ ) implies 𝑛 𝑚⁄ = 	𝑘 𝑙⁄ . We are given that 
|𝑛 𝑚⁄ − 𝑘 𝑙⁄ | = |𝑛𝑙 − 𝑚𝑘|/|𝑚𝑙| is infinitesimal. Assume 𝑛 𝑚⁄ ≠ 	𝑘 𝑙⁄ . Then |𝑚𝑙|/|𝑛𝑙 − 𝑚𝑘| is 
in 𝐿. Since 𝑛,𝑚, 𝑘, 𝑙 are integers, |𝑛𝑙 − 𝑚𝑘| ≥ 1 and therefore |𝑚𝑙| |𝑛𝑙 − 𝑚𝑘|⁄ < |𝑚𝑙|, so 
𝑚𝑙 ∈ 𝐿. Without loss of generality we can assume that |𝑚| ≥ |𝑙| which, by previous 
Case (f) implies that ∆(𝑚	 ∈ 𝐿	). But 𝑚 ∈ 𝐾 ⊃ ¬∆(𝑚 ∈ 𝐿) which follows from 𝑚 ∈ 𝐾 ⊃
∆(𝑚 ∈ 𝐾) and ∆(𝐾⋂𝐿 = 𝜙).(See Corollary III.3.) Therefore 𝑛 𝑚⁄ = 	𝑘 𝑙⁄ . 

[End of proof] 

Corollary III.4 𝐸𝑄 is an ∆-equivalence relation. Furthermore, if 𝑛 is in K 
and 𝑥ä	𝐸𝑄	𝑥ä s for 𝑖	 = 	1, . . . , 𝑛 then ∆(𝑥s	𝐸𝑄	𝑥6 s). 

Proof: We are given that there are 𝑁s, … , 𝑁6 ∈ 𝐿 such that |𝑥ä − 𝑥ä s| < 1/𝑁ä for 𝑖 =
1. . 𝑛. Let 𝑁 be the maximum of the 𝑁ä. Then |𝑥s − 𝑥6 s| < 1/(𝑁 𝑛⁄ ). Since 𝑁 ∈ 𝐿, it 
follows from Theorem III.1 (d) that ∆(𝑁 𝑛⁄ ∈ 𝐿) and therefor ∆(𝑥s𝐸𝑄𝑥6 s). 

[End of proof] 

Corollary III.5 (𝑆, 𝐸𝑄,𝑁𝐸,+,∗, 0, 1) is a field. 

Of course, any closure statements may require a tense operator and only 

standard 𝑥	𝑁𝐸	0 have inverses. Strictly speaking this structure is not a field 
but might be called a “∆-field”. 

Theorem III.2 If 𝑥	 ∈ 𝑆 and 𝑥	𝐺𝐸	0 then 𝑥 has a square root in S. That is, we can 
determine a 𝑦 ∈ 𝑆 such that 𝑦w	𝐸𝑄	𝑥. 

Proof: If 𝑥	 < 	0 then set 𝑦 = 0 . Since 𝑥	 ≥ 	−𝑒 for some positive infinitesimal 𝑒, 
𝐴𝐵𝑆(𝑦 ∗ 𝑦	 − 	𝑥) = −𝑥	 ≤ 	𝑒, and therefore 𝑦 ∗ 𝑦	𝐸𝑄	𝑥.  

For x > 0 choose 𝑐 = 𝑚𝑎𝑥{𝑧 ∗ 𝑥, 𝑧}). The property (𝑘/𝑧)w < 𝑥 is decidable*. Note that 
(𝑐/𝑧)w ≥ 𝑥 so we can use BMEP to define natural number 𝑘	 ≤ 𝑐 such that (𝑘/𝑧	)w ≤ 	𝑥	 <
((𝑘 + 1) 𝑧⁄ )w = (𝑘/𝑧 + 1 𝑧⁄ )w. Set 𝑦 = 	𝑘/𝑧. Then 𝑦w ≤ 𝑥 < 𝑦w + 2𝑦/𝑧 + 1/𝑧w so 

 𝐴𝐵𝑆(𝑦 ∗ 𝑦	 − 	𝑥) < (2𝑦 + 1/𝑧)/𝑧. 

𝑦	w ≤ 	𝑥 implies 𝑦 ≥ 1 ∧ 1 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 or 𝑦 < 1 so, correspondingly, 

𝐴𝐵𝑆(𝑦 ∗ 𝑦	 − 	𝑥) < (2𝑥 + 1 𝑧⁄ ) 𝑧⁄ < 3𝑥/𝑧 or 𝐴𝐵𝑆(𝑦 ∗ 𝑦	 − 	𝑥) < (2 + 1 𝑧⁄ ) 𝑧⁄ < 3/𝑧. 

                         
* That (𝑘/𝑧)w < 𝑥 is decidable follows from the axioms for linear ordering. Of 
course we can’t determine which of (𝑘/𝑧)w < 𝑥 or ¬((𝑘/𝑧)w < 𝑥) holds until 
particular natural numbers have been substituted in for 𝑘, 𝑥, and for the 
parameter 𝑧. What the proof of Theorem III.2 does is use BMEP to give a 
prescription for computing 𝑘 and hence the candidate square root 𝑦 of x, once 
𝑥 and 𝑧 have been specified. And, of course, we guarantee that the result of 
Theorem III.2, that 𝑦w	𝐸𝑄	𝑥 is valid, by choosing 𝑧 to meet the conditions of 
the Soundness Theorem of Section II with respect to the proof of Theorem II.2. 
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∆(3/𝑧 ∈ 𝐼) and, since 𝑥 is in 𝑆, ∆w(3𝑥/𝑧 ∈ 𝐼), so either 𝑦 ≥ 1 and ∆w(𝑦w	𝐸𝑄	𝑥) or 𝑦 < 1 
and ∆(𝑦w	𝐸𝑄	𝑥). These last two assertions are independent of the choice of ℱ. 

By choosing a suitable ℱ we can actually guarantee 𝑦w	𝐸𝑄	𝑥. Chose n in K such 
that 𝑥 ≤ 𝑛 and 1 < 𝑛. (This is possible since x is in S. If there is a finite set 
of standard positive rationals for which we want square roots, choose the 

largest such 𝑛.) Therefore  

𝐴𝐵𝑆(𝑦 ∗ 𝑦	 − 	𝑥) < 3𝑛/𝑧. 

Now, if we assume that that ℱ(𝑛) 	> (3𝑛)w, then 

 ℱ<𝐼𝑁𝑇(𝑧/(3𝑛))= > 	 (3𝑧 (3𝑛)⁄ )w = 	𝑧	 ∗ 	 (𝑧/𝑛w) > 𝑧	. 

The last inequality follows since 𝑧/𝑛w ≥ 1 for otherwise, 𝑧 ≤ 𝑛w < ℱ(1, 𝑛). But, by 
K6, it will be the case that ℱ(1, 𝑛) < 𝑧, which is not possible. Therefore 𝑧/(3𝑛) 
is large and hense, 3𝑛/𝑧 is in I, so 𝑦w	𝐸𝑄	𝑥.  

[End of proof] 

As in Pythagoras' day, if n and m are standard and in reduced form then not 
(𝑛/𝑚)w	𝐸𝑄	2. Simply apply Theorem III.1(h) and observe that (𝑛/𝑚)w = 	2 is 
impossible by drawing the usual contradiction. 

The predicate 𝐴(𝑥) 𝑥 < 	𝑧 is decidable in RCA even though z is a parameter. 
Without assigning a value to 𝑧, comparisons like '3	 < 	𝑧' or assertions like "𝑧 
is even” can't be evaluated by numerical calculations. Nevertheless, ∀𝑥(𝐴(𝑥) 	∨
¬	𝐴(𝑥)) is an immediate consequence of the decidability of < in RA. One works 
informally in RCA as if a suitably large value for z had been chosen. In this 
conception, actual computations can be carried out. The expression "suitably 

large" means suitable for some particular finite set of calculations and/or 

arguments in accordance with the Soundness Theorem of Section II. Of course, 

no fixed choice if 𝑧 is suitable for all calculations and arguments. 

Theorem III.3 Let 𝑝(𝑥) = ∑ 𝑝ä6
� 𝑥ä with 𝑝6 = 1. Assume that 𝑝(𝑥) is an odd degree 

polynomial with 1 + 𝑑𝑒𝑔𝑟𝑒𝑒(𝑝) in 𝑆 and all of its coefficients 𝑝ä in 𝑆 Then 
∆w∃𝑥(𝑝(𝑥)	𝐸𝑄	0	 ∧ 𝑥 ∈ 𝑆). Assume that ℱ(𝑛) > 	𝑛6 w. This guarantees that 𝑝(𝑥) has has 
degree of continuity 2 (See Theorem III.7.) 

Proof: Define 𝑀 to be the Lagrange root bound 𝑀 = max	{1,∑ |𝑝ä|}6
� . The zeros, if 

any, are within [−𝑀,𝑀]. Let 𝑁 = max	{𝑛 + 1, |𝑝�|, … , |𝑝6|}. Then 𝑀 ≤ 𝑁 ∗ 𝑁 so ∆𝑀 ∈ 𝑆. 
Since 𝑝(𝑥)	 is an odd degree polynomial it must cross the x-axis in side [−𝑀,𝑀]. 
Therefore, applying the Intermediate Value Theorem (Theorem III.8) and the fact 

that 𝑝(𝑥) has degree of continuity 2, it follows that ∆w∃𝑥(𝑝(𝑥)	𝐸𝑄	0	 ∧ 𝑥 ∈ 𝑆). 

[End of proof] 
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Corollary III.6 (𝑆, 𝐸𝑄,+,∗, 0, 1) is a real closed field.* 

Unlike ordinary constructive or intuitionistic analysis one cannot prove 𝑥	𝐺𝐸	𝑦 
from ¬(𝑥	𝐿𝑇	𝑦). Specifically, 

Theorem III.4 ∀𝑥𝑦(¬(𝑥	𝐿𝑇	𝑦) 	⊃ 𝑥	𝐺𝐸	𝑦) is not provable in RCA. 

Proof: If this was a theorem of RCA then one could apply the Soundness Theorem 

of Part II and provide a class of models for this sentence. Suppose 

𝑃 ⊢od_ ∀𝑥𝑦(¬(𝑥	𝐿𝑇	𝑦) 	⊃ 𝑥	𝐺𝐸	𝑦). Using the Soundness Theorem, if 𝑖 > ∆ − 𝑑𝑒𝑝𝑡ℎ(𝑃) and 𝜁 >
𝓂(𝑖 + ∆ − 𝑑𝑒𝑝𝑡ℎ(𝑃)) then there is a number 𝑒 = 𝐸(⌈𝑃⌉, 𝜁) such that (𝑒, 𝑖, 𝜁) RE 
∀𝑥𝑦(¬(𝑥	𝐿𝑇	𝑦) 	⊃ 𝑥	𝐺𝐸	𝑦). Within the realization model (𝑒, 𝑖, 𝜁), 𝐾 and 𝐿 are defined. 
Define 𝑛� = 𝓀(𝑖) + 1. 𝓀(𝑖) in the maximum member of 𝐾 and 𝑛�	strictly between the 
members of 𝐾 and 𝐿. Let 𝑡 = 1 and define 𝑠	 = 	1 − 1/𝑛�. We can show that for all 𝑎, 
(𝑎, 𝑖, 𝜁) does not realize 𝑠	𝐿𝑇	𝑡 and therefore (𝑒ûù𝑠ú, ù𝑡úü, 𝑖, 𝜁) RE ¬𝑠	𝐿𝑇	𝑡. On the 
otherhand, (𝑒ûù𝑠ú, ù𝑡úü, 𝑖, 𝜁) does not realize 𝑠	𝐺𝐸	𝑡 since this would require that 𝑛� ∈
𝐿 which is false. Therefore (𝑒, 𝑖, 𝜁) could not have realized ∀𝑥𝑦(¬(𝑥	𝐿𝑇	𝑦) 	⊃ 𝑥	𝐺𝐸	𝑦) 
and so ∀𝑥𝑦(¬(𝑥	𝐿𝑇	𝑦) 	⊃ 𝑥	𝐺𝐸	𝑦) is not provable in RCA. 

[End of proof] 

 Intuitively there is a 'gap' between the x that are 𝐿𝑇	0 and those that are 
𝐺𝐸	0.  

 

------)………(-------  

𝑥	𝐿𝑇	0  gap  		𝑥	𝐺𝐸	0 

Such a gap is a necessary consequence of taking serious the idea that class K 
of 'standard' natural numbers is growing in time. This effects the completeness 

of 'closed' intervals. More about this point later. 

STABLE SEQUENCES 

Algebraic and transcendental numbers can be represented in RCA by means of 

"stable" sequences, the analogue of Cauchy sequences. 

Definition III.2 A sequence 𝓈:	𝑁	 → 	𝑄 is stable of degree 𝑑 iff 

 (1) 𝑛,𝑚	 ∈ 𝐿 implies ∆6(𝓈(𝑛)	𝐸𝑄	𝓈(𝑚)); 

 (2) 𝓈(𝑛)	𝑁𝐸	𝓈(𝑚) implies ∆6(𝑛	 ∈ 	𝐾	 ∨ 𝑚	 ∈ 	𝐾). 

It follows from clause (1) that if 	𝓈 is a stable sequence, and n is large, then 
𝓈(𝑛) acts as the ‘limit’ of the sequence. 

                         
* Closure is expressed using the future tense operator ∆ as in the sentence 𝑥,
𝑦	 ∈ 	𝑆 ⊃ ∆(𝑥 + 𝑦 ∈ 	𝑆). 
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Example III.1 Representing the square root of 2 by a stable sequence. 

We can represent the square root of 2 by means of the following stable sequence 

of degree 0: 

 𝓈(𝑂) = 	1, 𝓈(𝑛 + 𝑙) = 	𝓈(𝑛)/2	 + 	1/𝓈(𝑛) for 𝑛	 ≥ 	1. 

By induction one can show that ∀𝑛∀𝑚 C𝑚 < 𝑛 ⊃ <𝐴𝐵𝑆<𝓈(𝑛)– 	𝓈(𝑚)= < 1 2¥⁄ =D. If 𝑛 > 𝑚 are 

in 𝐿, then 2¥ is in 𝐿 so 𝓈(𝑛)	𝐸𝑄	𝓈(𝑚). On the other hand, if 𝓈(𝑛)	𝑁𝐸	𝓈(𝑚) for 𝑚 < 𝑛 
then there is a 𝑘 in 𝐾 such that |𝓈(𝑛) − 	𝓈(𝑚)| ≥ 1 𝑘⁄  so 1 2¥⁄ > 1/𝑘 which implies 𝑚 <
𝑘 so 𝑚 ∈ 𝐾. Therefore 𝓈(𝑛) is a stable series of degree 0. Let 𝑟	 = 	𝓈(𝑧). Then 
𝓈(𝑧 + 1) = 𝑟 2⁄ + 1/𝑟. Now |𝑟 − (𝑟 2⁄ + 1/𝑟)| < 1/27 so |𝑟w − 2| < 1 27Äw⁄ < 1/𝑧 (since 1 < 𝑟 < 2) 
so 𝑟w	𝐸𝑄	2.	

Example III.2 Regular sequences are stable. 

A sequence 𝓈(𝑛) is regular if 𝐴𝐵𝑆(𝓈(𝑛)	– 𝓈(𝑚)) 	≤ 	1/𝑛	 + 	1/𝑚 for all 𝑛 and 𝑚	 > 	0. It 
is easy to check that regular sequences are stable of degree 1. 

The relation between stable sequences and completeness is given in the 

next, theorem. 

Definition III.3 Closed intervals ⌈𝑎, 𝑏⌉ and |⌈𝑎, 𝑏⌉|. 

Let 𝑎, 𝑏 be in Q. Define 

⌈𝑎, 𝑏⌉ = {	𝑥 ∶ 	𝑎		𝐿𝐸	𝑥 ∧ 𝑥	𝐿𝐸	𝑏}; 

|⌈𝑎, 𝑏⌉| = {𝑥 ∶ 	¬(𝑥	𝐿𝑇	𝑎) 	∧ ¬(𝑥	𝐺𝑇	𝑏)	}. 

Note that ¬(𝑥	𝐿𝑇	𝑦) is a weaker condition than 𝑦	𝐿𝐸	𝑥 so ⌈𝑎, 𝑏⌉ is strictly 
contained in |⌈𝑎, 𝑏⌉|. 

Theorem III.5 Closure properties of RCA. 

 (1) S is complete. That is, if 𝓈(𝑛) is a stable sequence in S of degree 𝑑 ∈
𝐾, and ∀𝑛(𝑛	 ∈ 𝐾 ⊃ 𝓈(𝑛) ∈ 	𝑆), then ∆6 w∀𝑛	(𝓈(𝑛) 	 ∈ 𝑆). 

 (2) |⌈𝑎, 𝑏⌉| is complete for any 𝑎, 𝑏	 ∈ 𝑆 . That is, if 𝓈(𝑛) is a stable series 
of degree 𝑑 ∈ 𝐾 and ∀𝑛(𝑛 ∈ 𝐾 ⊃ ∆(𝓈(𝑛) ∈ |⌈𝑎, 𝑏⌉|)) then ∆6 w∀𝑛(𝓈(𝑛) 	 ∈ |[𝑎, 𝑏]|). 

Proof of (1): Let 𝑛� be any natural number. We will prove that  ∆6 w(𝓈(𝑛�) 	 ∈ 𝑆).  

Assume that 𝐴𝐵𝑆<𝓈(𝑛�) 	− 	𝓈(0)= < 	1. Then 𝐴𝐵𝑆<𝓈(𝑛�)= < 𝐴𝐵𝑆<𝓈(0)= + 1 which would imply 
that ∆(𝓈(𝑛�) ∈ 𝑆) and we would be done. 

Assume that 𝐴𝐵𝑆<𝓈(𝑛�) 	− 	𝓈(0)= ≥ 	1. Define 𝑋6: 	 = {𝑛 ∶ 	𝑛 ≤ 	 𝑛� 	∧ 𝐴𝐵𝑆(𝓈(𝑛�)	– 	𝓈(𝑛)) 	< 	1}. 𝑋6: 
is decidable, 𝑛� ∈ 𝑋6:, so 𝑋6: is non-empty, and 0 ∉ 𝑋6:. Applying BLEP to 𝑋6: one 
can construct a 𝑘 ∈ 𝑋6: such that  

0 < 𝑘	 ≤ 𝑛� and 𝐴𝐵𝑆(𝓈(𝑛�) 	− 	𝓈(𝑘)) 	< 	1	 ≤ 	𝐴𝐵𝑆(𝓈(𝑛�) − 	𝓈(𝑘 − 1)).  

Therefore 𝓈(𝑛�)	𝑁𝐸	𝓈(𝑘 − 1) so, 𝓈 being stable of degree 𝑑, we must have ∆6(𝑘 − 1 ∈
𝐾) and hence ∆6 s(𝑘 ∈ 𝐾). By the hypothesis, 𝑘	 ∈ 𝐾 implies 𝓈(𝑘) 	 ∈ 𝑆. Therefore 
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∆6 s(𝓈(𝑘) 	 ∈ 𝑆). Since 𝐴𝐵𝑆<𝓈(𝑛�)= < 	𝐴𝐵𝑆(𝓈(𝑘)) 	+ 	1 it follows that ∆6 w(𝓈(𝑛�) 	 ∈ 𝑆). 

[End of proof of Theorem III.5 (1)] 

Proof of (2): It is required to show that ¬(𝓈(𝑛)	𝐿𝑇	𝑎) and ¬(𝑏	𝐿𝑇	𝓈(𝑛)) for any 𝑛. 
Since the two cases are very similar, I shall just demonstrate the former.  

Suppose 𝓈(𝑛)	𝐿𝑇	𝑎 for some 𝑛. That is,  

(a) 𝓈(𝑛) 	≤ 	𝑎	 − 	1/𝑘	, for some 𝑘	 ∈ 𝐾. 

Let 𝑋	 = {𝑚 ∶ 	𝑚	 ≤ 𝑛	 ∧ 𝑎	– 	1/2𝑘	 < 	𝓈(𝑚)}. 𝑋 is decidable and ¬𝑛	 ∈ 𝑋 . However, 0	 ∈ 𝑋 for 
otherwise 𝓈(0) ≤ 𝑎 − 1 2𝑘⁄  which would imply that ∆(𝓈(0)	𝐿𝑇	𝑎) contradicting the 
hypothesis of (2). BMEP can be applied to effectively obtain 𝑚	 ∈ 𝑋 such that 

(b) 𝓈	(𝑚 + 1) 	≤ 𝑎	– 	1/2𝑘	 < 	𝓈(𝑚).  

𝑘	 ∈ 𝐾 implies that ∆(2𝑘	 ∈ 𝐾)  and therefore (a) and (b) imply that ∆(𝓈(𝑛)	NE	𝓈(𝑚)). 
Since 𝓈 is stable of degree 𝑑 and 𝑚 ≤ 𝑛 it follows that ∆6 s(𝑚 ∈ 𝐾) and therefore 

(c) ∆6 w((𝑚 + 1) ∈ 𝐾	 ∧ 	2𝑘 ∈ 𝐾 ∧ (𝓈(𝑚 + 1) < 𝑎	– 1 2𝑘⁄ )). 

This would imply that  

(d) ∆6 w∃𝑘(𝑘 ∈ 𝐾	 ∧ 𝓈(𝑘)	𝐿𝑇	𝑎). 

From the hypothesis of (2) we get  

(e) ∆6 w∀𝑛(𝑛 ∈ 𝐾 ⊃ ¬𝓈(𝑛)	𝐿𝑇	𝑎) 

Since (e) contradicts (d) we conclude that ∀𝑛(¬(𝓈(𝑛)	𝐿𝑇	𝑎). Using a 
similar argument we can prove that ∀𝑛(¬(	𝓈(𝑛)	𝐺𝑇	𝑏). 
[End of proof of Theorem III.5 (2)] 

Continuous Functions 

Definition III.4 Continuous 𝑅𝐶𝐴 functions of degree 𝑑 ∈ 𝐾.  

Let 𝐴 be a subset of 𝑆 and let 𝑓 be a rational valued function mapping 𝐴 into 
𝑆. Let 𝑑 ∈ 𝐾.  

Define 𝑓 to be an 𝑅𝐶𝐴 function with degree of functionality 𝑑	 iff 

(1) for all 𝑥, 𝑦 ∈ 𝐴, 𝑥	𝐸𝑄	𝑦 implies ∆6(𝑓(𝑥)	𝐸𝑄	𝑓(𝑦)). 

Define 𝑓 to be an 𝑅𝐶𝐴 continuous function with degree of continuity 𝑑 iff 𝑓 is 
an 𝑅𝐶𝐴 function with degree of functionality 𝑑 and 

(2) for all 𝑥, 𝑦 ∈ 𝐴, 𝑓(𝑥)	𝑁𝐸	𝑓(𝑦) implies ∆6(𝑥	𝑁𝐸	𝑦). 

(1) is just the basic assertion of the functionality of 𝑓(𝑥) with respect to 𝐸𝑄. 
(2) says that there are no "jumps". (1) and (2) imply that 𝑅𝐶𝐴 continuous 
functions preserve stable sequences in the sense of the following theorem. 
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Theorem III.6 Let 𝑓 be an 𝑅𝐶𝐴 function of continuity degree 𝑑 with domain 𝐴 ⊆
𝑆. If 𝓈	(𝑛), n = 0,1,… is a stable sequence in 𝐴 of degree 𝑒, then 𝑓(𝓈(𝑛))	is a 
stable sequence of degree 𝑑 + 𝑒. 

Proof: Since 𝓈 is stable sequence of degree 𝑒, 

(1) 𝑛,𝑚	 ∈ 𝐿 implies ∆Å(𝓈(𝑛)	𝐸𝑄	𝓈(𝑚)); 

(2) 𝓈(𝑛)	𝑁𝐸	𝓈(𝑚) implies ∆Å(𝑛	 ∈ 	𝐾	 ∨ 𝑚	 ∈ 	𝐾). 

From condition (1) it follows that ∆6 Å(𝑓<𝓈(𝑛)=𝐸𝑄	𝑓<𝓈(𝑚)=) for all 𝑛,𝑚 ∈ 𝐿. 

From condition (2) it follows that 𝑓(𝓈(𝑛))	𝑁𝐸	𝑓(𝓈(𝑚)) ⊃ ∆6(𝓈(𝑛)𝑁𝐸	𝓈(𝑚))) ⊃ ∆6 Å(𝑛	 ∈ 	𝐾	 ∨
𝑚	 ∈ 	𝐾). 

[End of proof] 

Theorem III.7 Let 𝑝(𝑥) be a polynomial with degree in 𝐾 and coefficients in S. 
p is an 𝑅𝐶𝐴 continuous function defined on S (assuming ℱ(𝑛) > 	𝑛6 w) with degree 
of continuity 2.  

Proof: Let 𝑥, 𝑦 ∈ 𝑆. To prove the theorem use the following estimate:  

𝐴𝐵𝑆<𝑝(𝑥) − 	𝑝(𝑦)= < 	𝐴𝐵𝑆(𝑥 − 𝑦) ∗ 𝑚(¥ w) where 𝑚 ∈ 𝐾 is an upper bound to the 
absolute values of x, y, and the degree and coefficients of 𝑝(𝑥).  

Note that 𝑚 ∈ 𝐾 and this implies ∆(𝑚¥ w ∈ 𝐾) and if 𝑒 = |𝑥 − 𝑦| ∈ 𝐼 then 
𝐴𝐵𝑆<𝑝(𝑥) − 	𝑝(𝑦)= < 𝑒 ∗ 𝑚¥ w and, by Lemma III.1(e), ∆w(𝑒 ∗ 𝑚¥ w ∈ 𝐼), so ∆w(𝑝(𝑥)𝐸𝑄	𝑝(𝑦)). 
On the other hand, if 1 𝑘⁄ < 𝐴𝐵𝑆(𝑝(𝑥) − 𝑝(𝑦)) for 𝑘 ∈ 𝐾 then 1 𝑘⁄ ∗ 1 𝑚¥ w⁄ < 𝐴𝐵𝑆(𝑥 − 𝑦).	 
∆(𝑚¥ w ∈ 𝐾) so by Lemma III.1(a), ∆w(𝑘 ∗ 𝑚¥ w ∈ 𝐾), and hence ∆w(𝑥	𝑁𝐸	𝑦). 

[End of proof] 

Note: in general we will drop the 𝑅𝐶𝐴 from “𝑅𝐶𝐴 continuous” and understand that 
by the expression “continuous function” we mean 𝑅𝐶𝐴 continuous. 

Theorem III.8 (Intermediate value Theorem.) Let 𝑎, 𝑏 ∈ 𝑆 and let 𝑓 be continuous 
on ⌈𝑎, 𝑏⌉ with degree of continuity 𝑑 and suppose that 𝑓(𝑎) 	< 	𝑓(𝑏). There is a 
rational valued function 𝒸(𝑦) defined on ⌈𝑓(𝑎), 𝑓(𝑏)⌉ such that if 𝑦	 ∈ ⌈𝑓(𝑎), 𝑓(𝑏)⌉ 
then ∆6 s(𝑓(𝒸(𝑦))	𝐸𝑄	𝑦).  

Proof: Assume 𝑦 is in ⌈𝑓(𝑎), 𝑓(𝑏)⌉. If 𝑦 < 𝑓(𝑎) define 𝒸(𝑦) = 𝑎. Since 𝑦	𝐺𝐸	𝑓(𝑎) it 
follows that 𝑦	𝐸𝑄	𝑓(𝑎) so ∆6 s(𝑦	𝐸𝑄	𝑓(𝑐(𝑦)). Similarly, if 𝑦	 > 	𝑓(𝑏) define 𝒸(𝑦) = 	𝑏 and 
we can show that 𝑦	𝐸𝑄	𝑓(𝑏) so ∆6 s(𝑦	𝐸𝑄	𝑓(𝑐(𝑦)).  

Now assume 𝑓(𝑎) 	≤ 𝑦	 ≤ 𝑓(𝑏) and define the finite set 
𝐴(𝑦) = {𝑚 ∶ 	𝑚	 ≤ (𝑏 − 𝑎) 	∗ 𝑧	 ∧ (∀𝑘)(𝑘	 ≤ 	𝑚	 ⊃ 𝑓	(𝑎 + 𝑘/𝑧) 	≤ 	𝑦)	}.  

𝐴(𝑦) is non-empty since 0 is in it. It is decidable and bounded above. Apply 
BMEP to get the maximum number 𝑚	 ∈ 𝐴(𝑦) and define 𝒸(𝑦) 	= 	𝑎 + 𝑚/𝑧. By the 
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definition of 𝑚, 𝑓<𝑐(𝑦)= ≤ 𝑦 and 𝑚	 ≤ (𝑏 − 𝑎) 	∗ 𝑧. Therefore 𝑚/𝑧 ≤ (𝑏 − 𝑎) and, hence 
0 ≤ 𝑏 − (𝑎 + 𝑚 𝑧⁄ ). Claim that ∆6(𝑓<𝒸(𝑦)=𝐸𝑄	𝑦). 

Case 1. 𝑚 + 1	 ≤ (𝑏 − 𝑎) 	∗ 𝑧. Then 𝑎 + 𝑚/𝑧 and 𝑎 + (𝑚 + 1)/𝑧 are in ⌈𝑎, 𝑏⌉  and  

𝑓	(𝑎 + 𝑚/𝑧) 	≤ 𝑦	 < 	𝑓	(𝑎 + (𝑚 + 1)/𝑧).  

This implies that  

𝐴𝐵𝑆(𝑓(𝒸(𝑦)) 	− 	𝑦) 	< 	𝐴𝐵𝑆(𝑓(𝑎 + 𝑚/𝑧) 	− 𝑓(𝑎 + 𝑚 𝑧⁄ + 1/𝑧))  

and since 𝑓 is continuous on [𝑎, 𝑏] with degree of continuity 𝑑 and 1/𝑧 ∈ 𝐼, it 
follows that ∆6(𝐴𝐵𝑆(𝑓(𝑎 + 𝑚/𝑧) 	− 𝑓(𝑎 + 𝑚 𝑧⁄ + 1/𝑧)) ∈ 𝐼) and therefore ∆6(𝑓<𝒸(𝑦)=𝐸𝑄	𝑦), and 
so ∆6 s(𝑓<𝒸(𝑦)=𝐸𝑄	𝑦). 

Case 2. 𝑚 + 1	 > 	 (𝑏 − 𝑎) ∗ 𝑧. Therefore 0 ≤ 𝑏 − (𝑎 + 𝑚 𝑧⁄ ) < 1/𝑧 so 𝑐(𝑦)	𝐸𝑄	𝑏. From the 𝑑-
continuity of 𝑓 it follows that ∆6(𝑓<𝒸(𝑦)=𝐸𝑄	𝑓(𝑏)). 𝑦	𝐿𝐸	𝑓(𝑏) since 𝑦	 ∈ [𝑓(𝑎), 𝑓(𝑏)], so 
∆6(𝑦	𝐿𝐸	𝑓(𝑏)). Therefore ∆6(𝑓<𝒸(𝑦)=𝐸𝑄	𝑓(𝑏) ∧ 𝑦	𝐿𝐸	𝑓(𝑏)) so ∆6 s(𝑦	𝐿𝐸	𝑓(𝒸(𝑦))). But 𝑓	(𝑐(𝑦)) 	≤ 	𝑦 
so it follows that ∆6 s<𝑓	<𝑐(𝑦)=	𝐸𝑄	𝑦=. 

[End of proof] 

I shall finish Part III with the Uniform Continuity theorem for RCA. This kind 

of result can be established in intuitionistic analysis but can't be proved 

(without directly building it in to the definition of continuity) in 

constructive analysis (see [Beeson, 1979]12). 

Lemma III.5 Let 𝑎 and 𝑏 be in 𝑆, 𝑎	𝐿𝑇	𝑏, and let 𝑓(𝑥) be a rational valued 
function continuous in [𝑎, 𝑏] of degree 𝑑. Let 𝑒	 > 	0 and let 𝑥 be any standard 
rational such that 𝑎	 ≤ 	𝑥	 ≤ 	𝑏. Define the predicate  

A(k, e, x) 	≡ 	0 ≤ 𝑘	 ≤ 𝑧	 ∧ ((𝑎 ≤ 𝑥 + 𝑘 𝑧⁄ ≤ 	𝑏) ⊃ ∀𝑚	<𝑚	 ≤ 	𝑘 ⊃ 𝐴𝐵𝑆<𝑓	(𝑥) − 	𝑓	(𝑥 +𝑚 𝑧⁄ )= < 	𝑒=. 

and define ℊ(𝑒, 𝑥) 	= 	max	{𝑘/𝑧|𝐴(𝑘, 𝑒, 𝑥)}. By definition, 𝑎 ≤ 𝑥 + ℊ(𝑒, 𝑥) ≤ 	𝑏. 

Claim: ℊ(𝑒, 𝑥)	 is well defined for 𝑒 > 0 and 𝑎	 ≤ 	𝑥	 ≤ 	𝑏, and, if 𝑒	𝐺𝑇	0 then 
∆6 s	(ℊ(𝑒, 𝑥)	𝐺𝑇	0). Note that by the definition of ℊ(𝑒, 𝑥)	, if 𝑚 𝑧⁄ ≤ 	ℊ(𝑒, 𝑥)	 then 
|𝑓	(𝑥) − 	𝑓	(𝑥 +𝑚 𝑧⁄ )| < 𝑒. 

Proof: Note that 𝐴(0, 𝑒, 𝑥) always holds true and 𝐴(𝑛, 𝑒, 𝑥) implies 𝑛	 ≤ 	𝑧. 
Furthermore, 𝐴(𝑛, 𝑒, 𝑥) is decidable. Use of BMEP guarantees that ℊ(𝑒, 𝑥) 	=
	max	{𝑛/𝑧|𝐴(𝑛, 𝑒, 𝑥)} is well defined. By definition of ℊ(𝑒, 𝑥), if 𝑚 𝑧⁄ ≤ 	ℊ(𝑒, 𝑥) and 𝑎	 ≤
	𝑥 + 𝑚/𝑧	 ≤ 	𝑏 then 𝐴𝐵𝑆(𝑓(𝑥) 	− 	𝑓(𝑥 + 𝑚/𝑧)) 	< 	𝑒. 

Suppose 𝑒	𝐺𝑇	0.  
By the definition of ℊ(𝑒, 𝑥), there is an 𝑛, 0 ≤ 𝑛 ≤ 𝑧 such that ℊ(𝑒, 𝑥) = 	𝑛/𝑧.  
Assume 𝑛 = 	𝑧. Then ℊ(𝑒, 𝑥) = 	1 which is 𝐺𝑇	0 and we are done. 

Assume 𝑛	 < 	𝑧. If 𝑎	 ≤ 	𝑥 + 𝑛/𝑧	 ≤ 	𝑏  then, since 𝑛 is maximal for 𝐴(𝑛, 𝑥, 𝑒), and 𝑥 +
(𝑛 + 1) 𝑧⁄ 	𝐿𝐸	𝑏 and 	𝑓 is defined on [𝑎, 𝑏], it follows that 

 𝐴𝐵𝑆(𝑓(𝑥) 	− 	𝑓(𝑥 + 𝑛/𝑧)) 	< 	𝑒 < 𝐴𝐵𝑆(𝑓(𝑥) 	− 	𝑓	(𝑥 + (𝑛 + 1)/𝑧)	).  

If 𝑒	𝐺𝑇	0 then 𝑓(𝑥)	𝑁𝐸	𝑓(𝑥 + (𝑛 + 1)/𝑧), which, because 𝑓 is continuous of degree 𝑑, 
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implies ∆6((𝑛 + 1) 𝑧⁄ 𝐺𝑇	0). (𝑛 + 1) 𝑧⁄ 𝐺𝑇	0 implies ∆(𝑛 𝑧⁄ 	𝐺𝑇	0) and therefore 
∆6((𝑛 + 1) 𝑧⁄ 𝐺𝑇	0) implies ∆6 s(𝑛 𝑧⁄ 	𝐺𝑇	0), that is, ∆6 s(ℊ(𝑒, 𝑥)	𝐺𝑇	0). 
[End of proof of Lemma III.5.] 

Lemma III.6 Let 𝑎 and 𝑏 be in 𝑆, 𝑎	𝐿𝑇	𝑏, and let 𝑓(𝑥) be a rational valued 
function continuous in [𝑎, 𝑏] of degree 𝑑. Use the function ℊ(𝑒, 𝑥) defined in 
Lemma III.5 to define for 𝑒 > 0  

ℊ(𝑒) = min	{ℊ(𝑒 2⁄ , 𝑎 + 𝑘 𝑧⁄ )|𝑎	 ≤ 	𝑎 + 𝑘 𝑧⁄ ≤ 𝑏}. 

Claim (1): 𝑒	𝐺𝑇	0 implies ∆6 w(ℊ(𝑒)	𝐺𝑇	0). 

Claim (2): Let 𝑎 ≤ 𝑥 ≤ 𝑏 and  𝑚 ≥ 0. If 𝑒	𝐺𝑇	0 and 𝑚/𝑧	 ≤ 	ℊ(𝑒) and 𝑎 ≤ 𝑥 + 𝑚/𝑧 ≤ 𝑏  
then ∆6 w<𝐴𝐵𝑆<𝑓(𝑥) − 	𝑓(𝑥 + 𝑚 𝑧⁄ )= < 2𝑒/3=. 

Proof: From Lemma III.5, 𝑚/𝑧	 ≤ 	ℊ(𝑒) implies that 𝑎 ≤ 	𝑥	 + 𝑚 𝑧⁄ ≤ 𝑏. Define 

nÅ = 𝑧 ∗ ℊ(𝑒) so that nÅ 𝑧⁄ = ℊ(𝑒). Note that 𝑎 ≤ 𝑎 + 𝑛Å 𝑧⁄ ≤ 𝑏. 

Let 𝑒	𝐺𝑇	0 and let 𝑥 be any standard rational such that 𝑎	 ≤ 	𝑥	 ≤ 	𝑏. 

By Lemma III.5, 𝑒/2	𝐺𝑇	0 implies that ∆6 s(ℊ(𝑒 2⁄ , 𝑎 + 𝑛Å 𝑧⁄ )	𝐺𝑇	0). Since 𝑒	𝐺𝑇	0 
implies that ∆(𝑒/2	𝐺𝑇	0) and since ℊ(𝑒) = ℊ(𝑒 2⁄ , 𝑎 + 𝑛Å 𝑧⁄ ) it follows that 𝑒	𝐺𝑇	0 
implies ∆6 w(ℊ(𝑒)	GT	0), which proves Claim (1). 

We now prove Claim (2). The set {𝑘|0 ≤ 𝑘 ∧ 𝑎 + 𝑘 𝑧⁄ ≤ 𝑥} is non-empty and bounded 
above since 𝑎 + 𝑘 𝑧⁄ ≤ 𝑥 ≤ 𝑏 implies that 𝑘 ≤ (𝑏 − 𝑎)/𝑧. Let 𝑘� = 𝑚𝑎𝑥{𝑘|𝑎 + 𝑘 𝑧⁄ ≤ 𝑥}. Then  

𝑎	 +	𝑘�/𝑧	 ≤ 𝑥	 < 	𝑎 + (𝑘� + 1)/𝑧 and hence |(𝑎	 + 𝑘� 𝑧⁄ ) − 𝑥| < 1/𝑧. 

Now 

𝐴𝐵𝑆(𝑓(𝑥) 	− 	𝑓(𝑥 + 𝑚/𝑧)) 	≤ 

𝐴𝐵𝑆(𝑓(𝑥) 	− 	𝑓(𝑎 + 𝑘�/𝑧))	

+𝐴𝐵𝑆<𝑓(𝑎 + 𝑘�/𝑧 + 𝑚/𝑧) − 𝑓(𝑥 + 𝑚 𝑧⁄ )=	

+	𝐴𝐵𝑆(𝑓(𝑎 + 𝑘�/𝑧) 	− 	𝑓(𝑎 + 𝑘�/𝑧 + 𝑚/𝑧)). 

Since 𝑥 and 𝑎 + 𝑘�/𝑧 differ by less than 1/𝑧, it follows that 𝑥	𝐸𝑄	(𝑎 + 𝑘�/𝑧). 
Therefore, by the 𝑑-continuity of 𝑓, 

∆6(𝐴𝐵𝑆(𝑓(𝑥) 	− 	𝑓(𝑎 + 𝑘�/𝑧)) ∈ 𝐼) and 

∆6(𝐴𝐵𝑆(𝑓(𝑎 + 𝑘�/𝑧 + 𝑚/𝑧) − 𝑓(𝑥 + 𝑚 𝑧⁄ )) ∈ 𝐼). 

Since	𝑒	𝐺𝑇	0, it follows that ∆(𝑒 12⁄ 	𝐺𝑇	0) and therefore 

∆6 s(𝐴𝐵𝑆<𝑓(𝑥) − 	𝑓(𝑎 + 𝑘� 𝑧⁄ )= < 𝑒 12⁄ ) and 

∆6 s<𝐴𝐵𝑆<𝑓(𝑎 + 𝑘�/𝑧 + 𝑚/𝑧) − 𝑓(𝑥 + 𝑚 𝑧⁄ )= < 𝑒 12⁄ =. 

Also, 𝑎 ≤ 𝑎 + 𝑘� 𝑧⁄ + 𝑚 𝑧⁄ ≤ 𝑥 + 𝑚 𝑧⁄ ≤ 𝑏 and 𝑚/𝑧	 ≤ 	ℊ(𝑒) 	≤ 	ℊ(𝑒/2, 𝑎 + 𝑘�/𝑧) so, by Lemma 
III.5,  

∆6 w(𝐴𝐵𝑆(𝑓(𝑎 + 𝑘�/𝑧) 	− 	𝑓(𝑎 + 𝑘�/𝑧 + 𝑚/𝑧)) < 𝑒/2)). 

Therefore the sum of the three terms is less than 2𝑒/3 so ∆6 w<𝐴𝐵𝑆<𝑓(𝑥) −
	𝑓(𝑥 + 𝑚 𝑧⁄ )= < 2𝑒/3= which establishes Claim (2). 
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[End of proof of Lemma III.6] 

Theorem III.9 (Uniform Continuity Principle.) Let 𝑎 and 𝑏 be in 𝑆, 𝑎	𝐿𝑇	𝑏, and 
let 𝑓(𝑥) be a rational valued function continuous in ⌈𝑎, 𝑏⌉ of degree 𝑑. There is 
a function ℊ(𝑒) mapping the positive rationals into [0, 1] such that  

(1) 𝑒	𝐺𝑇	0 implies ∆6 w(ℊ(𝑒)	𝐺𝑇	0). 

(2) 𝑒	𝐺𝑇	0 and 0 < 𝑟 ≤ 	ℊ(𝑒) and 𝑥, 𝑥 + 𝑟	 ∈ [𝑎, 𝑏] implies ∆6 w(𝐴𝐵𝑆(𝑓(𝑥)	– 𝑓(𝑥 + 𝑟)) 	< 	𝑒). 

Proof: Let ℊ(𝑒) be the function defined in Lemma III.6. 

Part (1) follows directly from Lemma III.6. 

To prove part (2) let 𝑥 be in ⌈𝑎, 𝑏⌉ and 𝑒	𝐺𝑇	0. Divide this into three cases:  

Case 1: 𝑥	 > 	𝑏 . 

Case 2: 𝑎 ≤ 𝑥 ≤ 𝑏. 

Case 3: 𝑥 < 𝑎. 

Case 1. The case where 𝑥 > 	𝑏 is trivial, since if 𝑥, 𝑥 + 𝑟	 ∈ ⌈𝑎, 𝑏⌉ then 𝑟 is 
infinitesimal so ∆6(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟))	𝐸𝑄	0). We are given that 0	𝐿𝑇	𝑒, so ∆(	0		𝐿𝑇	𝑒/2) 
(assuming that ℱ(𝑛) ≥ 2 ∗ 𝑛.) If 𝑑 ≤ 1, then ∆(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟)	)𝐸𝑄	0	 ∧ 	0	𝐿𝑇	𝑒/2) and, 
therefore ∆w(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟)	)	𝐿𝑇		 e 2	⁄ ) and so ∆6 w(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟) < 	𝑒)). If 𝑑 > 1 
then ∆6(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟))	𝐸𝑄	0) and ∆6(	0		𝐿𝑇	𝑒/2) so  

∆6(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟))	𝐸𝑄	0	 ∧ 	0	𝐿𝑇	𝑒/2)  

and hence  

∆6 s(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟))	𝐿𝑇	 𝑒 2⁄ )  
which implies ∆6 w(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟))	𝐿𝑇	 < 𝑒). 

Case 2. 𝑎 ≤ 𝑥 ≤ 𝑏. Choose 𝑒	𝐺𝑇	0 and any positive 𝑟 ≤ ℊ(𝑒) such that 𝑥 + 𝑟 is in [𝑎, 𝑏]. 
We will show that  

∆6 w(𝐴𝐵𝑆(𝑓(𝑥) − 𝑓(𝑥 + 𝑟)) < 	5𝑒/6)  
and therefore ∆6 w(𝐴𝐵𝑆(𝑓(𝑥) − 𝑓(𝑥 + r)) < 𝑒). 

Assume 𝑥 + 𝑟 ≤ 𝑏. Define 𝑚 such that 𝑚 𝑧⁄ ≤ 𝑟 ≤ (𝑚 + 1)/𝑧. Note that 𝑟	𝐸𝑄	𝑚/𝑧. Now, 

𝐴𝐵𝑆<𝑓(𝑥)– 𝑓(𝑥 + 𝑟)= ≤ 

𝐴𝐵𝑆<𝑓(𝑥) − 𝑓(𝑥 + 𝑚 𝑧⁄ )= 

+𝐴𝐵𝑆(𝑓(𝑥 + 𝑚 𝑧⁄ ) − 𝑓(𝑥 + 𝑟)). 

Since 𝑥 + 𝑚 𝑧⁄ ≤ 𝑏 and 𝑚 𝑧⁄ ≤ ℊ(𝑒) we can apply Lemma III.6 and conclude that 
∆6 w<𝐴𝐵𝑆<𝑓(𝑥) − 	𝑓(𝑥 + 𝑚 𝑧⁄ )= < 2𝑒/3=. Since 𝑓 is 𝑑-continuous, ∆6(𝐴𝐵𝑆(𝑓(𝑥 + 𝑚 𝑧⁄ ) −
𝑓(𝑥 + 𝑟)) 	 ∈ 	𝐼). Therefore ∆6 s(𝐴𝐵𝑆(𝑓(𝑥 + 𝑚 𝑧⁄ ) − 𝑓(𝑥 + 𝑟)) < 𝑒/6) since 0	𝐿𝑇	𝑒. 
Consequently ∆6 w<𝐴𝐵𝑆<𝑓(𝑥) − 𝑓(𝑥 + r)= < 5𝑒 6⁄ =. 

On the other hand, suppose 𝑥 + 𝑟 > 𝑏. Then 𝑥 + 𝑟	𝐸𝑄	𝑏. Define 𝑚 such that  𝑥 +
𝑚 𝑧⁄ ≤ 𝑏 < 𝑥 + (𝑚 + 1)/𝑧. Then 𝑥 + 𝑚 𝑧⁄ 	𝐸𝑄	𝑏 and therefore ∆(𝑥 + 𝑚 𝑧		𝐸𝑄		𝑥 + 𝑟⁄ ). 
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𝐴𝐵𝑆<𝑓(𝑥)– 𝑓(𝑥 + 𝑟)= ≤ 

𝐴𝐵𝑆<𝑓(𝑥) − 𝑓(𝑥 + 𝑚 𝑧⁄ )= 

+𝐴𝐵𝑆(𝑓(𝑥 + 𝑚 𝑧⁄ ) − 𝑓(𝑥 + 𝑟)). 

Once again we can apply Lemma III.6 to the first term and conclude that 

∆6 w<𝐴𝐵𝑆<𝑓(𝑥) − 	𝑓(𝑥 + 𝑚 𝑧⁄ )= < 2𝑒/3=. From the 𝑑-continuity of 𝑓, we get 
∆6 s(𝐴𝐵𝑆(𝑓(𝑥 + 𝑚 𝑧⁄ ) − 𝑓(𝑥 + 𝑟)) ∈ 	𝐼). Therefore ∆6 w(𝐴𝐵𝑆(𝑓(𝑥 + 𝑚 𝑧⁄ ) − 𝑓(𝑥 + 𝑟)) < 𝑒/6) and we 
can conclude that ∆6 w<𝐴𝐵𝑆<𝑓(𝑥) − 𝑓(𝑥 + r)= < 5𝑒/6=. 

Case 3. 𝑥 < 𝑎. Choose 𝑒	𝐺𝑇	0 and any positive 𝑟 ≤ 	ℊ(𝑒) such that 𝑥 + 𝑟 is in [𝑎, 𝑏]. 
Since 𝑥 ∈ [𝑎, 𝑏], it follows that 𝑥	𝐸𝑄	𝑎 and therefore 0 < 𝜀 = 𝑎 − 𝑥 ∈ 𝐼. Moreover, 𝑥 +
𝑟 is in [𝑎, 𝑏] implies 𝑥 + 𝑟 ≤ 𝑏 + 𝛿 for some non-negative 𝛿 ∈ 𝐼. 

Consider the term 𝑎 + r − δ− ε. It’s equal to x + r − δ which, by definition, 
is less than or equal to 𝑏.  

If 𝑎 + r − δ− ε < a then r − δ− ε < 0 so 0 < r ≤ δ+ ε and hence ∆(𝑟 ∈ 𝐼). In this 
case we directly have ∆6 s(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟)) ∈ 𝐼) because of the 𝑑-continuity of 
𝑓, and hence ∆6 w(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟)) < 𝑒).  

On the other hand, if 𝑎 + r − δ− ε ≥ 𝑎, then 𝑎 and 𝑎 + r − δ− ε are in [𝑎, 𝑏]. 

Now  

𝐴𝐵𝑆<𝑓(𝑥)– 𝑓(𝑥 + 𝑟)= ≤ 

+𝐴𝐵𝑆(𝑓(𝑥) − 𝑓(𝑎)) 

+𝐴𝐵𝑆<𝑓(𝑎) − 𝑓(𝑎 + r − δ− ε)= 

+𝐴𝐵𝑆(𝑓(𝑎 + r − δ− ε) − 𝑓(𝑥 + 𝑟)). 

Since 𝑓 is 𝑑-continuous, ∆6(𝐴𝐵𝑆(𝑓(𝑥) − 𝑓(𝑎)) ∈ 	𝐼) and therefore  

∆6 s(𝐴𝐵𝑆(𝑓(𝑥) − 𝑓(𝑎)) < 𝑒/12).  

We can apply Case 2 to the second term and conclude that 

∆6 w<𝐴𝐵𝑆<𝑓(𝑎) − 𝑓(𝑎 + r − δ− ε)= < 5𝑒/6= 

Finally, 𝐴𝐵𝑆<𝑓(𝑎 + r − δ− ε) − 𝑓(𝑥 + 𝑟)= = 𝐴𝐵𝑆(𝑓(𝑥 + r − ε) − 𝑓(𝑥 + 𝑟)), so, since 𝑓 is 𝑑-
continous,  ∆6<𝐴𝐵𝑆<𝑓(𝑎 + r − δ− ε) − 𝑓(𝑥 + 𝑟)= ∈ 𝐼= and therefore 

∆6 s<𝐴𝐵𝑆<𝑓(𝑎 + r − δ− ε) − 𝑓(𝑥 + 𝑟)= < 𝑒/12=.  

Putting these three inequalities together we get ∆6 w(𝐴𝐵𝑆(𝑓(𝑥)– 𝑓(𝑥 + 𝑟)) < 𝑒). 

[End of proof of Theorem III.9] 

Final Remark. Since RCA is restricted to considering rational valued functions, 

irrational and transcendental functions can be defined, for example, by making 

use of limit equalities, finitely iterated numerical methods algorithms or 

finite Taylor series, and performing 𝑧 steps of the computation. 
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For example, consider the classic limit 𝑒R = lim
6→D

(1 + 𝑥 𝑛⁄ )6 and define the rational 

function 𝑒(𝑥) = (1 + 𝑥 𝑧⁄ )7. Then we can find a computable rational valued function 
𝜀7(𝑥) with values in 𝐼 for standard 𝑥, so that |𝑒R − 𝑒(𝑥)| < 𝜀7(𝑥). This is a 
statement of classical analysis. The relation |𝑒R − 𝑒(𝑥)| < 𝜀7(𝑥) can be used to 
demonstrate the usual exponential properties such as  ∆(𝑒(𝑥) ∗ 𝑒(𝑦)𝐸𝑄	𝑒(𝑥 + 𝑦))* 
(assuming that ℱ(𝑛) > 3𝑛w) and so forth. These relationships can also be proved 
algebraically, directly from the definition of 𝑒(𝑥) without referencing the 
classical 𝑒R function. 

As an example using iteration consider square root function 𝑎s/w for 𝑎 > 1. 
Choose 𝑥s as any estimate of the square root† of 𝑎 such that 2𝑎 > 𝑥sw > 𝑎 and	0 <
𝑥s < 𝑎. Then iteratively compute 𝑥6 s = (𝑥6 + 𝑎 𝑥6⁄ )/2 and define the rational 
function 𝑠𝑞𝑟𝑡(𝑎) 	= 𝑥7. The error term 𝑒6 = (𝑥6w 𝑎⁄ ) − 1 satisfies the recursion 
formula 𝑒6 s = 𝑒6w/(4𝑒6 + 4). Since 0 ≤ 𝑥s < 𝑎, it follows that 𝑒s is standard and 
since 2𝑎 > 𝑥sw > 𝑎, it follows that 1 > 𝑒s > 0. Therefore 0 < 𝑒6 s = 𝑒6w (4𝑒6 + 4)⁄ <
𝑒6w 4⁄ < 𝑒6/4 for 𝑛 ≥ 1 and so 𝑒6 converges rapidly. In particular 0 < 𝑒7 < 𝑒s(1 4⁄ )7Äs 
so |(𝑥7w 𝑎⁄ ) − 1| < (1 4⁄ )7Äs < 1/𝑧w (for any 𝑧 > 2) and hence |(𝑥7w) − 𝑎| < (𝑎 𝑧⁄ )(1 𝑧⁄ ) < 1/𝑧 for 
standard 𝑎. This shows that for standard 𝑎, 𝑠𝑞𝑟𝑡(𝑎)w	𝐸𝑄	𝑎. 

 

                         
* Just observe that 𝑒(𝑥) ∗ 𝑒(𝑦) = (𝑒R + 𝑎)(𝑒F + 𝑏) = 𝑒R𝑒F + 𝑎 ∗ 𝑒R + 𝑏 ∗ 𝑒F + 𝑎 ∗ 𝑏 for some 
infinitesimals 𝑎 and 𝑏. 
† A standard estimate is 𝑥s = (1 + 6𝑎 + 𝑎w) <4(𝑎 + 1)=⁄ .	
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1 [Volpin, 1968] For an early work of Yessenin-Volpin in English see "The ultra-

intuitionistic criticism and the antitraditional program for foundations of 

mathematics", in “Intuitionism and proof theory”, Edited by Kino, A., Myhill, J., 

Vesley, R. E. (Proc. Conf., Buffalo, N.Y., 1968), Studies in Logic and the Foundations 

of Mathematics, Amsterdam: North-Holland, pp. 3–45. 
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the Anti-traditional Program for Foundations of Mathematics”, J. Symbolic Logic 40 
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3 [A. Robinson, 1966] “Nonstandard Analysis”, North-Holland, Amsterdam. (Second,  

revised edition, 1974). One can consider a nonstandard model of the rationals and do 

analysis therein. This of course would not be constructive. Furthermore, there are 

certain key strategies of non-standard analysis that can't be directly applied in RCA. 

If they could, there would be no gap between 𝑆 and 𝐿. 

4 [Mycielski, 1981] “Analysis Without Actual Infinity”, The Journal of Symbolic Logic, 

Vol. 46, No. 3 (Sep., 1981), pp. 625-633. Although this is an explicitly classical 

approach it shares certain computational parallels with RCA. ∆ corresponds to the 

requirement of choosing a larger rational index p on 𝜔( in order to complete some 

computation. 

5 [Ruokolainen  2004] ”Constructive Nonstandard Analysis Without Actual Infinity”, 

Academic dissertation, University of Helsinki, Faculty of Science Department of 

Mathematics and Statistic, 2004. The dissertation is available through the link 

http://ethesis.helsinki.fi/julkaisut/mat/matem/vk/ruokolainen/construc.pdf. 

6 [Geiser 1981] “Rational Constructive Analysis”, Lecture Notes in Mathematics #873, 

Edited by A. Dold and B. Eckmann, Springer Verlag, 1981. The Lecture notes are simply 

a compilation of the working papers read at the State University Conference on 

Constructive Mathematics held at Las Cruses, New Mexico, in the Summer of 1980. 

7 [Kleene 1945] “On the Interpretation of Intuitionistic Number Theory”, The Journal of 

Symbolic Logic, Vol. 10, No. 4 (Dec., 1945), pp. 109-124 

8 [Kripke 1968] For a presentation of Kripke semantics the reader is referred to Hughes 

and Cresswell, “An Introduction to Modal Logic”, chpt.15, Methuen and Co. Ltd., 1968. 

9 [Tarski 1930]) “The Concept of Truth in Formalized Languages in Logic, Semantics, 

Metamathematics”, Hackett, 1983, pp. 152-268. 

10 [Kleene, 1967] “Introduction to Metamathematics” , §82 , Van Nostrum. See pp. 

502-503 for the definition of realizability. Corresponding to the Soundness 

theorem of part II is Kleene's Theorem 62, p. 504. 
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11 [Hakli & Negri, 2010] “Does the deduction theorem fail for model logic?”, Synthese 

Vol. 187, No. 3,(August 2012), pp. 849-867. See especially Section 3: “A proof of the 

deduction theorem.” The model system HK with model operator ☐ (necessitation) is 
examined in this section and the inference from 𝐴 infer ☐𝐴 is restricted to the cases 
where 𝐴 is a theorem of HK. Ofcourse, ☐ is only very partially analogous to the temporal 
operator. For example, from 𝐴 infer ∆𝐴 is a permitted rule of inference. But ☐𝐴 means 
“true in all worlds”, whereas our ∆𝐴 mean will be true in the next stage of constructing 

the natural numbers and not necessarily true at “all future times”. In HK ☐ distributes 
over implication (☐(𝐴 ⊃ 𝐵) ⊃( ☐𝐴 ⊃☐𝐵)) while in our tense logic, ∆ distributes and 
factors over implication (∆(𝐴 ⊃ 𝐵) ⊃ (∆𝐴 ⊃ ∆𝐵) and (∆𝐴 ⊃ ∆𝐵) ⊃ ∆(𝐴 ⊃ 𝐵).) 

12 [Beeson, 1979] Logic Col. 1978 p. 36 North Holland. Beeson exhibits a (non-

constructive) example of a real valued function defined on the Cantor subset of the 

recursive Reals that is not uniformly continuous. In the setting of RCA, the 

corresponding example is provably not a function. 
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