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THE JOURNAL OF SYMBOLIC LOGIC 
Volume 39, Number I, March 1974 

A 
FORMALIZATION OF ESSENIN-VOLPIN'S PROOF THEORETICAL 

STUDIES BY MEANS OF NONSTANDARD ANALYSIS 

JAMES R. GEISER 

This paper constitutes a short report on the proof theory which developed in the 
course of an investigation of Essenin-Volpin's foundational studies (see his paper 
in Infinitistic methods.) The Infinitistic methods paper is primarily concerned with 
proving the consistency of ZF. His arguments employ some very unusual ideas, 
especially that of the possibility of different length natural number series. The 
modal setting which he uses for these ideas and which is really all important is 
not reflected in the present paper. Only a simple representation of this idea is 
considered, namely, the use of *N, the nonstandard natural numbers, together 
with N, the standard natural numbers, to play the roles of a "long" and a "short" 
number series. 

It will be useful to make a few general remarks before beginning on the technical 
details. These remarks are especially directed towards those people who have read 
Essenin-Volpin's work, the above-mentioned paper in particular and the one 
appearing in the proceedings of the 1968 Conference on Intuitionism and Proof 
Theory at Buffalo, New York. 

I want to draw a comparison between the ultra-intuitionistic position of Essenin- 
Volpin on the one hand with the intuitionistic and realistic positions on the 
foundations of mathematics on the other hand. Intuitionism makes a transition 
from the traditional mathematical position (realism) that the rules of mathematical 
reasoning must be constructed so as to preserve truth (as known by an omniscient 
being about "the real world" of abstract mathematical objects) to the position that 
the rules of mathematical reasoning must be in accord with the process of knowing 
(performed by the "ideal mathematician" or "creative subject") about the world 
of mental constructions. Ultra-intuitionism deepens and extends this transition to 
the position that the fundamental rules of mathematical reasoning must be in 
accord with processes of knowing accessible to human beings. 

The realist, represented by G6del, endeavors to reflect upon the (hypothetical) 
consciousness of a super mind, capable of grasping (knowing in entirety) infinite 
totalities. Brouwer reflected upon the consciousness of the idealized creative sub- 
ject, not able to grasp the infinite, but yet capable of grasping any arbitrarily large 
finite totality, and understanding the infinite in terms of unending, potentially 
infinite processes. Essenin-Volpin considers the human mind capable of grasping 
only the small finite, but also able to understand the potentially infinite. Here the 
large finite may also be understood in a potential or modal sense. 
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82 JAMES R. GEISER 

The transitions from realism to intuitionism to ultra-intuitionism has been 
accompanied by an enrichment of language and the ability to become sensitive to 
new aspects of mathematical phenomena. In particular, in ultra-intuitionism, the 
description of a process, the intensional component of a process and the consum- 
mation of a process all play explicit and separate although related roles. For exam- 
ple, a distinction is drawn between a finite process which has been completed and a 
process for which it has been proved that it will terminate. Feasible, possible and 
actual act as distinct modalities. There are temporal components to both intuition- 
ism and ultra-intuitionism but these appear to be of very different natures. 

As a final point of comparison let us consider various "obstacles" to the accept- 
ance of the classical rules of reasoning. For the realist, of course, there are none. 
The intuitionist, on the other hand, must take into account that knowing is part 
of a temporal process from which we (and even the "creative subject") cannot 
remove ourselves. Because disjunction is understood in an effective sense (to know 
A v B is to know A or to know B), A V -,A is accepted only if it can be established 
that A is decidable. The general Law of the Excluded Middle must be rejected 
because it is tantamount to asserting the existence of a decision procedure for all of 
mathematics. 

In addition to this, the ultra-intuitionist recognizes certain further obstacles. 
These are connected with his understanding of the notion of potential infinity; the 
most outstanding of these is the hypothesis of the categoricity of "the" natural 
numbers. For him such an assumption cannot be justified and therefore there opens 
the possibility of different length natural number series. It may then happen (in an 
argument) that the hypothetical completion of one supposedly finite process (asso- 
ciated with the initial segment of a natural number series N1) may require the com- 
pletion of a related potentially infinite process (associated with the entire process of 
a "shorter" natural number series N2). These are called Zenonian situations and 
must be accounted for and dealt with in the ultra-intuitionistic foundations of 
mathematics. 

Having made these brief remarks and once again emphasising the very partial 
nature of the representation of Essenin-Volpin's work here reported upon, let us 
turn to the details. 

Essenin-Volpin's first paper is concerned with the consistency of Zermelo- 
Fraenkel set theory (ZF). He investigates a proof theory corresponding to a 
structure Y consisting of hereditarily finite sets over a set of urelements.1 After 
suitable modifications of ZF to ZF- (due to the lack of extentionality in S9), Y5 is 
easily seen to be a model of ZF- except for the axiom of Infinity. However, there 
are arbitrarily large (although always finite) sets in 9- which may play the role of an 
infinite set for a while. That is to say, if we set up a certain proof theory in which a 
term t, describing a large finite set is, axiomatically, asserted to be infinite then we 
can prove all the axioms of ZF-; of course our deduction system is inconsistent. 
However, if we can show that the length of the shortest proof of x 0 x is an 
increasing function of the size of the chosen term t, then we shall have proved the 

1 I should make it clear here that the metamathematical point of view that I adopt in this 
paper is that of the traditional mathematician, i.e., some limited form of set theory. 
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consistency of ZF-. Essenin-Volpin's idea was to use different length number 
series, a long one (whose length is parameterized by the size of the term t) for con- 
structing .Y and a shorter one which is unending and from whose point of view, so 
to speak, t appears to be infinite. As we have already said, the natural number 
series is used for the short series, the nonstandard number series *N is used for the 
long series and the term t is chosen to have a pseudofinite (but actually infinite) size. 

To help limit the size of this paper we begin immediately to work within the 
framework of nonstandard analysis, after a few "orientation" remarks. 

Proof theory and basic model theory can be carried out in a very limited portion 
of set theory. For example, in Y' = (V, e), where V is the set of sets of rank c 17 
over a given set U of urelements. Assume that N (the set of natural numbers) is a 
subset of U. Let j: -K < *Y be a proper elementary embedding. *Y" = (* V, e) will 
then be a collection of sets of rank < 17 over the extended set *U of urelements; 
these are the so-called admissible or internal sets. The set N is the foremost example 
of a set of rank I over * U (we assume that j ] U is the identity on U, i.e., j(x) = x 
for all x in U) which is not internal. The sets of rank S 17 over *U which are not 
internal are called external. In general we denote j(x) by *x. x in * V is pseudo- 
finite (p.f.) iff * Yl-k FINLTE(x), where FINITE(x) is a first-order sentence that says 
that x is isomorphic to some segment {1, 2, * *, n} of *N. Choose no in *N - N. 

A notational technique that we shall make much use of is the following: Given 
an indexed collection {Xn I n E N} in V it may be "extended" to a collection, 
denoted by *Xn, of internal objects indexed by n e *N. The sequence *Xn behaves 
like Xn with respect to first-order properties expressible in Y. 

A final orientation remark. The nicest way to proceed in nonstandard analysis 
is simply to pretend that everything is normal, except that one must check, every 
once and a while, which sets are internal and which are not. Thus, for example, 
while not every bounded subset of *N has a least upper bound, (e.g., N) every 
bounded internal subset does. For more details see Nonstandard analysis by J. 
Geiser in Zeitschrift fur mathematische Logik and Grundlagen der Mathematik vol. 
16 (1970), pp. 297-318. 

The model. Let {an i n e N} denote a subset of U. With each nt e N we associated 
a structure .Yn in V which is (isomorphic to) the set ofhereditarily finite sets over 
{al, - * *, an}, with operations of singleton formation and union x u y, together with 
equality and a membership relation. In *-7 we shall consider *.nol the structure 
consisting of the hereditarily pseudofinite sets over the internal set b = {a,, . - *, and , 

(Note. The membership relation of *$no is well founded from the point of view of 
*Y/ but is actually not well founded from our outside point of view.) We also con- 
sider the structure So obtained from *7 noby removing the urelements ak when k is 
infinite. From the point of view of %0, an is a member of b iff n e N. 

The language. The appropriate "first-order" language for *7no is *Yn with 
alphabet: constants a ,, ano; variables x, y,---; [ ] (singleton operation), 
+ (union operation); e (membership relation), =; -, v, V (and A, -i-, 3 defined 
from -, v, V as usual). An example of a sentence of *Yno, which, incidentally, is 
true in *yno, is 

Vx[x=a, v x = a2 v v x=ano v 3y[y e x]]. 
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Let C1 = {a,, . * *, an.} and let CII denote the set of terms built up from [al],* , 
[an0] by application of [ ] and +. Let C = C1 U CII and CO = C - {ak I k is 
infinite). Let BASIC denote the set of atomic and the negation of atomic sentences 
true in *no. (Note. The image under of the satisfaction relation as it occurs in 1# 

is used to define "true in *7no-") 

THEOREM 1. *yWO h* ZF- - {Infinity}, *no =k* -Infinity. 
REMARK. We shall specify later what axioms appear in ZF-. The point here is 

that a nonextensional form of ZF "holds" in *9no except for the axiom of (Dede- 
kind) Infinity. As remarked above k* is just the image under j of the satisfaction 
relation which occurs in Y'. 

THEOREM 2. f0 is a model of ZF - after Comprehension and Replacement have 
been removed. In particular, So is a model of Infinity. 

REMARK. Here we are considering .5% as an ordinary structure for which the 
usual satisfaction relation may be defined for the sentences of *Yno which have con- 
stants in CO and have syntactical rank (number of connectives and quantifiers) in 
N. The set b = {a,, . * *, ano} (denoted in CII by b = [al] + * + [an0]) is "mapped 
1-1, properly into itself by the function 

S = {{{a,}, {a,, a2)) . } , * {{a no 1} {an o-1, ano))) 

denoted in C11 by s = [[[a,]] + [[a,] + [a2]]] + * * + [[[ano - 1] + * ]). Comprehen- 
sion fails in JY0, for example, in that there is no element of !o consisting of the 
subsets of b which are finite within .S"o. (Note. The set b is our "large finite set.") 

The deductive system. By a proof tree T we mean, in analogy with the standard 
definition, a partially ordered set T (T is to be an internal set) which is a tree to 
which a (pseudo) ordinal can be assigned according to the usual criteria together 
with an assignment of sentences of *Fno to the nodes of T. The rules of inference 
(and hence the rules which govern the sentence assignment) are: 

Weak rules. {DvAvBvC}-{DvBvAv C), {DvAvAv C}F 
{D v A v C), {A} F {A). 

Strong rules. {D) F {D v A), {A v D) F {- -,A V D}, {-,A v D, -,B v D} F 
{-,(A v B) v D), {A(t) I t E C} F {VxA(x)) (this is called Carnap's rule). 

Cut rule. {Cv A,- A V D})F{Cv D). 
C and D are called the side formulae and do not have to be present except in 

{D} F {D v A} where obviously D must be present and in the Cut rule where one of 
C or D must be present. By Hyp(T) we mean the hypotheses of T, that is the set of 
sentences which are assigned to the initial points of T. 

THEOREM 3. For all sentences A in *Yno, *g- n=* A iff there is a proof tree T of A 
such that Hyp(T) c BASIC. 

In particular we see that -Infinity is provable, a situation that we shall try to 
avoid. We want our proof trees to pick and choose between the sentences true in 

*Tno and fo so as to come as close to ZF- as possible. Now we fail to be able to 
deduce from BASIC the sentence A(s, b) which asserts that s maps b 1-1, properly 
into itself just because we cannot prove s is defined at ano in b, which in fact it is not. 
So we might introduce this as a further axiom. Actually this turns out to be equiva- 
lent to the addition of any contradiction (i.e., a sentence false in *Sno) to our set 
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BASIC. On the basis of convenience we set I equal to a,0 e a,0 and choose it to be 
our added axiom. Then we can show that "sufficiently simple" proof trees using 
these hypotheses do not get into trouble although they are, nevertheless, capable of 
proving the axiom of Infinity. To devise the appropriate notion of "simplicity" 
we introduce a complexity measure called the Skolem function of a tree, and the 
notion of pre-EV trees. 

Given a proof tree T we associate a sequence of subtrees (T), n e* N, defined by 
the conditions: (1) the terminal node of Tis in (T)n; (2) if x E Tand x has not been 
obtained by an application of a Carnap's rule then the immediate predecessors of x 
are in (T)n; (3) if x E T has been obtained by an application of a Carnap's rule and 
y is an immediate predecessor of x corresponding to a term t in CII or a term ak 

where k < n, then y is in (T), Let T = UnLN(T), T is called the pruned tree 
associated with T. 

DEFINITION 1. The Skolem function ST of a proof tree T is a function mapping 
*N into itself defined by the condition 

ST(n) = max{k I ak occurs as a term in (T)J}. 
By the phrase "occurs as a term" we mean occurring not simply as a proper part of 
a term. 

REMARK. Since T and (T), are always internal sets, and ak E T implies that 
k < no, it follows that ST(n) is always defined and has value < no. It is easy to see 
that ST is nondecreasing and if T has a Carnap's rule {A(t) I t E C) F VxA(x) where 
x occurs as a term in A(x), then, for k < no, sT(k) 2 k. 

DEFINITION 2. T is pre-EV iff ST: N N. 
REMARK. Pre-EV trees are our "simple" trees. Also, pre-EV trees make sense 

for So if we consider the pruned part, while the general tree does not. It may be 
shown, for example, that if A has syntactical rank in N then A is true in Y0 if it 
has a pre-EV proof from BASIC. 

Use of contradictions. We define a collection of trees C by the conditions 
Te .1 iff (1) Tispre-EV, 

(2) Hyp(T) c BASIC U {1}, 
(3) T is cut-free (i.e., contains no occurrences of the Cut rule). 

As an example we shall construct a proof tree T in C which proves the sentence 

1 m~~~~~-ano e ano .11. 

ano e ano -ano e an0 v -,an0 e [an0] 

Cut rule 

T= 
--t e [anol --ano e [anol 

(t # an0) (t = an0) 

Carnap's rule 
vx[_-- e [ano11 
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Vx[-,x e [aJ0]]. Of course this sentence is true in $'0 and false in * According to 
Theorem 3 this sentence cannot be proved by a tree whose hypotheses lie just in 
BASIC. Observe that -,t e [a,,.] e BASIC if t : a,, and likewise --a,, e a, e BASIC. 
Notice that the three conditions for membership in C are met by T; in particular, 
ST(k) = k for k < no, so T is clearly pre-EV. 

Results. 
Consistency of the proof theory. If A has finite syntactical rank (in N) then not 

both A and -7A can be provable by a tree in C. 
(Notation. FT A means that there is a proof of A in 9.) 

Cut-elimination. If A has finite rank then FI C v A and FI -,A v D implies 
FTCv D. 

Logic. (1) FL A v BiffKF A or FT B. 
(2) F A A Biff FTA and FT B. 
(3) FT -i--A iff FTA. 
(4) FT 3xA(x) iff there is a term t e CO such that FT A(t). 
(5) F* VxA(x) implies for all terms t e CO, FT A(t), but not conversely. 
(6) There is a sentence A with finite rank and containing no constant terms which 

is not decidable in C9, i.e., A v -,A has no proof in 9. Therefore the Law of the 
Excluded Middle fails for F-. 

(7) The Deduction Theorem and the Rule of Contradiction fail for K1. More 
precisely, A F- B means that there is a proof tree T satisfying conditions (1) and (3) 
of the definition of T and which also satisfies the condition that Hyp(T) C 
BASIC U {1} u {A} and T is a proof of B. Then A FT B does not imply that 
Fgr A -> B and A F- Vx[x # x] does not imply that Fs -,A. 

Set theory. FT (ZF -) -. Here (ZF )- consists of the (appropriately modified 
versions of) Pairing axiom, Sum set axiom, Power set axiom, the axiom of (Dede- 
kind) Infinity, and certain additionally modified versions of Comprehension and 
Replacement. For example, if For Vx[A(x) v -,A(x)] then Fo Vx3yVz[z e y 
z e x A A(z)]. Replacement can take various forms such as if 

(1) F- VxVy[F(x, y) v -,F(x, y)], 
(2) for every infinite k < no if *!7fO =* F(t, ak) then t = ak' for some infinite 

k' < no, 
(3) F- VxVyVz[F(x, y) A F(x, z) -* Vw[w e z - w e y]], 

then FT Vx3yVz[z e y +-* 3w[w e x A F(w, z)]]. 
Needless to say, this set theory is quite weak. However, we can also show that if 

A is an instance of Comprehension or Replacement (in their ordinary formulation, 
modified for a nonextensional set theory) and if A has finite rank (in N) then -,A 
is not provable in W. Because the Rule of Contradiction fails for FK this nice fact 
does not seem to yield any further consistency results. 

Semantics. If A has finite rank (in N) then FT A implies that $% F A. 
Arithmetic. We can code the language of arithmetic into *Y7fo by relativizing 

the variables to b, and replacing atomic formulae such as x + y = z by (x, y, z) ef 
wheref is a term in CII denoting the set of triples (ak, am, a,) such that k, m, n ? no 
and k + m = n and where (x, y, z) is the open term [[[x]] + [[x] + [y]]] + 
[[[[x]] + [[x] + [y]]] + [z]]. The other atomic relations of arithmetic can be 
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handled in a similar way and it can then be shown that all the true sentences of 
arithmetic when so translated are provable in Kg. In fact we can show that all the 
true XV sentences of second order arithmetic (suitably translated) are provable in 
FK. However, there are simple Ill sentences of second-order arithmetic which are 
undecidable in bF. 

Final remarks. The details and proofs of the results summarized here will 
appear in a paper to be published as part of a Springer Lecture Series Notes on 
Strict Finitism, edited by E. Engeler. It may be of interest to "constructivize" the 
techniques used here. I mean constructivity in a weak sense where we might use 
nonstandard languages in the sense of Barwise rather than as we have done, using 
nonstandard analysis. 

The Skolem function as defined in Definition 1 above is easily seen to make sense 
for standard proof trees as well as the nonstandard proof trees that we have been 
considering, and may be of interest to proof theorists as a complexity measure for 
proof trees with an r-type rule. In fact many of the technical results established in 
the above-mentioned fuller presentation apply to standard proof trees. These are 
results concerned with cut-elimination and various proof reduction procedures. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
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